Connect with us

News

SpaceX Falcon 9 rocket rolls out to launch pad with NASA X-ray telescope

Published

on

A SpaceX Falcon 9 rocket carrying NASA’s tiny IXPE X-ray telescope has rolled out to Kennedy Space Center (KSC) Pad 39A for the last time ahead of a planned Thursday, December 9th launch.

Falcon 9 is scheduled to lift off at the start of a 90-minute window that opens at 1am EST (06:00 UTC). The only payload: a first-of-its-kind 330 kg (~730 lb) spacecraft known as the Imaging X-ray Polarimetry Explorer (IXPE) that hopes to analyze the polarization of X-rays to explore black holes, nebulae, and bizarre lighthouse-like dead stars called pulsars in unprecedented detail. The mission is also interesting just for the sheer disparity between the size of the payload and the rocket that will launch it.

As noted, IXPE will weigh about a third of a ton at launch. SpaceX’s Falcon 9, on the other hand, will weigh roughly 550 tons (1.2M lb) when it lifts off, resulting in a truly unusual payload ratio of approximately 1:1700 or 0.06%. However, Falcon 9 will still have to work extremely hard to get IXPE into the correct orbit. That’s because IXPE is designed to operate in an almost exactly equatorial orbit with a zero-degree inclination.

Launching out of Cape Canaveral, which is located 28.5 degrees above the true equator, it’s physically to launch directly into a 0.2-degree equatorial orbit. Instead, a rocket needs to launch into a due-East parking orbit and then perform what’s known as a plane or inclination change once in space. Plane changes are infamous for often being (in terms of rocket performance) one of the most expensive maneuvers one can perform in orbit. That’s certainly the case for IXPE, which will require a 28.5-degree plane change shortly after liftoff.

NASA’s DSCOVR, TESS, and DART spacecraft ahead of Falcon 9 launches. (NASA)

For Falcon 9, that means that even the tiny ~330 kg IXPE likely still represents about 20-30% of its maximum theoretical performance (1.5-2 tons) for such a mission profile, while the same rocket is otherwise able to launch about 15 tons (33,000 lb) to the same 600 km (373 mi) orbit IXPE is targeting when no plane change is needed. As an example, per a NASA calculator with access to official performance data, Blue Origin says its massive New Glenn rocket – designed to launch more than 40 tons (~90,000 lb) to low Earth orbit (LEO) – can only launch about 2 tons (~4500 lb) to IXPE’s planned orbit

SpaceX is no stranger to launching absurdly small NASA spacecraft, including the ~700 kg (~1500 lb) Double Asteroid Redirection Test (DART) just last month, but IXPE – about 10% lighter than TESS – will be the smallest dedicated payload ever launched by Falcon 9. Following the launch, Falcon 9 booster B1061 will attempt its fifth drone ship landing more than 650 km (400 mi) downrange. Demonstrating just how much more challenging IXPE’s plane change makes an otherwise effortless launch to 600 km, an older and less capable Falcon 9 booster landed just 300 km (185 mi) downrange after launching TESS to an orbit as high as 375,000 km (233,000 mi) – about the same distance between the Earth and Moon.

Advertisement

Weather is currently 90% favorable for SpaceX’s December 9th IXPE launch.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor

Published

on

Tesla has officially launched public Robotaxi rides in Austin, Texas, without a Safety Monitor in the vehicle, marking the first time the company has removed anyone from the vehicle other than the rider.

The Safety Monitor has been present in Tesla Robotaxis in Austin since its launch last June, maintaining safety for passengers and other vehicles, and was placed in the passenger’s seat.

Tesla planned to remove the Safety Monitor at the end of 2025, but it was not quite ready to do so. Now, in January, riders are officially reporting that they are able to hail a ride from a Model Y Robotaxi without anyone in the vehicle:

Tesla started testing this internally late last year and had several employees show that they were riding in the vehicle without anyone else there to intervene in case of an emergency.

Tesla has now expanded that program to the public. It is not active in the entire fleet, but there are a “few unsupervised vehicles mixed in with the broader robotaxi fleet with safety monitors,” Ashok Elluswamy said:

Tesla Robotaxi goes driverless as Musk confirms Safety Monitor removal testing

The Robotaxi program also operates in the California Bay Area, where the fleet is much larger, but Safety Monitors are placed in the driver’s seat and utilize Full Self-Driving, so it is essentially the same as an Uber driver using a Tesla with FSD.

In Austin, the removal of Safety Monitors marks a substantial achievement for Tesla moving forward. Now that it has enough confidence to remove Safety Monitors from Robotaxis altogether, there are nearly unlimited options for the company in terms of expansion.

While it is hoping to launch the ride-hailing service in more cities across the U.S. this year, this is a much larger development than expansion, at least for now, as it is the first time it is performing driverless rides in Robotaxi anywhere in the world for the public to enjoy.

Continue Reading

Investor's Corner

Tesla Earnings Call: Top 5 questions investors are asking

Published

on

(Credit: Tesla)

Tesla has scheduled its Earnings Call for Q4 and Full Year 2025 for next Wednesday, January 28, at 5:30 p.m. EST, and investors are already preparing to get some answers from executives regarding a wide variety of topics.

The company accepts several questions from retail investors through the platform Say, which then allows shareholders to vote on the best questions.

Tesla does not answer anything regarding future product releases, but they are willing to shed light on current timelines, progress of certain projects, and other plans.

There are five questions that range over a variety of topics, including SpaceX, Full Self-Driving, Robotaxi, and Optimus, which are currently in the lead to be asked and potentially answered by Elon Musk and other Tesla executives:

SpaceX IPO is coming, CEO Elon Musk confirms

  1. You once said: Loyalty deserves loyalty. Will long-term Tesla shareholders still be prioritized if SpaceX does an IPO?
    1. Our Take – With a lot of speculation regarding an incoming SpaceX IPO, Tesla investors, especially long-term ones, should be able to benefit from an early opportunity to purchase shares. This has been discussed endlessly over the past year, and we must be getting close to it.
  2. When is FSD going to be 100% unsupervised?
    1. Our Take – Musk said today that this is essentially a solved problem, and it could be available in the U.S. by the end of this year.
  3. What is the current bottleneck to increase Robotaxi deployment & personal use unsupervised FSD? The safety/performance of the most recent models or people to monitor robots, robotaxis, in-car, or remotely? Or something else?
    1. Our Take – The bottleneck seems to be based on data, which Musk said Tesla needs 10 billion miles of data to achieve unsupervised FSD. Once that happens, regulatory issues will be what hold things up from moving forward.
  4. Regarding Optimus, could you share the current number of units deployed in Tesla factories and actively performing production tasks? What specific roles or operations are they handling, and how has their integration impacted factory efficiency or output?
    1. Our Take – Optimus is going to have a larger role in factories moving forward, and later this year, they will have larger responsibilities.
  5. Can you please tie purchased FSD to our owner accounts vs. locked to the car? This will help us enjoy it in any Tesla we drive/buy and reward us for hanging in so long, some of us since 2017.
    1. Our Take – This is a good one and should get us some additional information on the FSD transfer plans and Subscription-only model that Tesla will adopt soon.

Tesla will have its Earnings Call on Wednesday, January 28.

Continue Reading

Elon Musk

Elon Musk shares incredible detail about Tesla Cybercab efficiency

Published

on

(Credit: Tesla North America | X)

Elon Musk shared an incredible detail about Tesla Cybercab’s potential efficiency, as the company has hinted in the past that it could be one of the most affordable vehicles to operate from a per-mile basis.

ARK Invest released a report recently that shed some light on the potential incremental cost per mile of various Robotaxis that will be available on the market in the coming years.

The Cybercab, which is detailed for the year 2030, has an exceptionally low cost of operation, which is something Tesla revealed when it unveiled the vehicle a year and a half ago at the “We, Robot” event in Los Angeles.

Musk said on numerous occasions that Tesla plans to hit the $0.20 cents per mile mark with the Cybercab, describing a “clear path” to achieving that figure and emphasizing it is the “full considered” cost, which would include energy, maintenance, cleaning, depreciation, and insurance.

ARK’s report showed that the Cybercab would be roughly half the cost of the Waymo 6th Gen Robotaxi in 2030, as that would come in at around $0.40 per mile all in. Cybercab, at scale, would be at $0.20.

Credit: ARK Invest

This would be a dramatic decrease in the cost of operation for Tesla, and the savings would then be passed on to customers who choose to utilize the ride-sharing service for their own transportation needs.

The U.S. average cost of new vehicle ownership is about $0.77 per mile, according to AAA. Meanwhile, Uber and Lyft rideshares often cost between $1 and $4 per mile, while Waymo can cost between $0.60 and $1 or more per mile, according to some estimates.

Tesla’s engineering has been the true driver of these cost efficiencies, and its focus on creating a vehicle that is as cost-effective to operate as possible is truly going to pay off as the vehicle begins to scale. Tesla wants to get the Cybercab to about 5.5-6 miles per kWh, which has been discussed with prototypes.

Additionally, fewer parts due to the umboxed manufacturing process, a lower initial cost, and eliminating the need to pay humans for their labor would also contribute to a cheaper operational cost overall. While aspirational, all of the ingredients for this to be a real goal are there.

It may take some time as Tesla needs to hammer the manufacturing processes, and Musk has said there will be growing pains early. This week, he said regarding the early production efforts:

“…initial production is always very slow and follows an S-curve. The speed of production ramp is inversely proportionate to how many new parts and steps there are. For Cybercab and Optimus, almost everything is new, so the early production rate will be agonizingly slow, but eventually end up being insanely fast.”

Continue Reading