Connect with us

News

SpaceX launches NASA mission to study black holes, dead stars, and more

Falcon 9 streaks into orbit with NASA's IXPE X-ray observatory. (NASA & Richard Angle)

Published

on

SpaceX has successfully launched NASA’s Imaging X-ray Polarimetry Explorer telescope, paving the way for a unique aspect of black holes, a variety of dead stars, and other odd phenomena to be explored in unprecedented breadth and detail.

Marking the first time a NASA payload has launched on the fifth flight of a reused SpaceX rocket, Falcon 9 booster B1061 lifted off at 1am EST (06:00 UTC) to kick off the 330 kg (~730 lb) IXPE spacecraft’s journey to orbit. SpaceX’s workhorse rocket performed flawlessly. Just over eight minutes after liftoff, Falcon 9’s upper stage completed the first of two planned burns, entering a low parking orbit. About thirty seconds later, Falcon 9 B1061 stuck its fifth drone ship landing in 13 months, marking the end of another successful high-profile launch for the booster and ensuring that it will be able to complete many more such launches over the next few years.

Falcon 9 carries IXPE into orbit. (Richard Angle)

The first portion of the launch completed, Falcon 9’s upper stage then coasted in orbit for about 20 minutes before ignited for one last (very expensive) burn to place IXPE in its desired orbit. Known as a plane or inclination change, the maneuver – especially when performed deep in a large gravitational well – is exceptionally expensive, requiring an unintuitively large amount of launch vehicle performance (known as delta-V). The reason: IXPE’s nominal orbit is almost exactly equatorial, which Falcon 9’s Cape Canaveral launch site is about 28.5 degrees north of.

Lowering that inclination after launch requires a very energetic maneuver. Before Falcon 9 beat it out for the launch contract, IXPE was expected to launch on Orbital ATK’s air-launched Pegasus XL rocket, which would have allowed IXPE to be launched at the equator. However, SpaceX ultimately submitted a bid to launch IXPE for just ~$50M – cheaper than its competitor despite the fact that Falcon 9 is more than 20 times larger and could potentially launch an entire Pegasus XL into orbit. However, while Falcon 9 is designed to launch almost 23 tons into orbit in an expendable configuration and more than 16 tons with booster and fairing recovery, it’s only capable of launching about 1-2 tons to IXPE’s desired combination of an equatorial inclination and a ~600 km (~370 mi) orbit.

Ultimately, Falcon 9 completed the inclination change without issue, marking the successful completion of its first equatorial launch ever and SpaceX’s 28th successful launch in 2021 alone. Unlike a significant majority of spacecraft, IXPE was launched directly into its operational orbit and will likely need just a few days to refine its position and a few weeks after that for ground controllers to verify the health of all its systems and deploy a 4m (`13 ft) long ‘boom’ needed to operate its unique telescope.

Advertisement

If or when everything is up and running, IXPE will spend a minimum of two years observing at least 50 of the weirdest objects and phenomena in the universe. While many of those objects can’t be directly imaged, IXPE’s goal is to analyze the polarization of X-rays – high-energy beams of radiation – they produce at sensitivities two orders of magnitude greater than any previous experiment. In theory, that should allow IXPE to put long-held laws of relativity and quantum physics to the test in some of the most extreme environments in the universe, including particularly exotic nebulae (giant gas clouds), black holes, and bizarre neutron stars (including lighthouse-like pulsars and magnetars – dead stars with magnetic fields strong enough to compress atoms into cylindrical rods and make the actual vacuum of space refract light like a crystal).

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Giga Berlin plant manager faces defamation probe after IG Metall union complaint

Prosecutors in Frankfurt (Oder) confirmed they have opened a defamation probe into Gigafactory Berlin plant manager André Thierig.

Published

on

Credit: @Gf4Tesla/X

Tesla’s Giga Berlin plant manager is now under investigation after a complaint from trade union IG Metall, escalating tensions ahead of next month’s works council elections. 

Prosecutors in Frankfurt (Oder) confirmed they have opened a defamation probe into Gigafactory Berlin plant manager André Thierig, as per a report from rbb24.

A spokesperson for the Frankfurt (Oder) public prosecutor’s office confirmed to the German Press Agency that an investigation for defamation has been initiated following a criminal complaint filed by IG Metall against Thierig.

The dispute stems from Tesla’s allegation that an IG Metall representative secretly recorded a works council meeting using a laptop. In a post on X, Thierig described the incident as “truly beyond words,” stating that police were called and a criminal complaint was filed.

Advertisement

“What has happened today at Giga Berlin is truly beyond words! An external union representative from IG Metall attended a works council meeting. For unknown reasons, he recorded the internal meeting and was caught in action! We obviously called police and filed a criminal complaint!” Thierig wrote in a post on X.

Police later confirmed that officers did seize a computer belonging to an IG Metall member at Giga Berlin. Prosecutors are separately investigating the union representative on suspicion of breach of confidentiality and violation of Germany’s Works Constitution Act.

IG Metall has denied Tesla’s allegations. The union claimed that its member offered to unlock the laptop for review in order to accelerate the investigation and counter what it called false accusations. The union has also sought a labor court injunction to “prohibit Thierig from further disseminating false claims.”

The clash comes as Tesla employees prepare to vote in works council elections scheduled for March 2–4, 2026. Approximately 11,000 Giga Berlin workers are eligible to participate in the elections.

Advertisement
Continue Reading

News

Tesla wins FCC approval for wireless Cybercab charging system

The decision grants Tesla a waiver that allows the Cybercab’s wireless charging system to be installed on fixed outdoor equipment.

Published

on

Credit: Tesla AI/X

Tesla has received approval from the Federal Communications Commission (FCC) to use Ultra-Wideband (UWB) radio technology in its wireless EV charging system. 

The decision grants Tesla a waiver that allows the Cybercab’s wireless charging system to be installed on fixed outdoor equipment. This effectively clears a regulatory hurdle for the company’s planned wireless charging pad for the autonomous two-seater.

Tesla’s wireless charging system is described as follows in the document: “The Tesla positioning system is an impulse UWB radio system that enables peer-to-peer communications between a UWB transceiver installed on an electric vehicle (EV) and a second UWB transceiver installed on a ground-level pad, which could be located outdoors, to achieve optimal positioning for the EV to charge wirelessly.”

The company explained that Bluetooth is first used to locate the charging pad. “Prior to the UWB operation, the vehicular system uses Bluetooth technology for the vehicle to discover the location of the ground pad and engage in data exchange activities (which is not subject to the waiver).”

Advertisement

Once the vehicle approaches the pad, the UWB system briefly activates. “When the vehicle approaches the ground pad, the UWB transceivers will operate to track the position of the vehicle to determine when the optimal position has been achieved over the pad before enabling wireless power charging.”

Tesla also emphasized that “the UWB signals occur only briefly when the vehicle approaches the ground pad; and mostly at ground level between the vehicle and the pad,” and that the signals are “significantly attenuated by the body of the vehicle positioned over the pad.”

As noted by Tesla watcher Sawyer Merritt, the FCC ultimately granted Tesla’s proposal since the Cybercab’s wireless charging system’s signal is very low power, it only turns on briefly while parking, it works only at very short range, and it won’t interfere with other systems.

While the approval clears the way for Tesla’s wireless charging plans, the Cybercab does not appear to depend solely on the new system.

Advertisement

Cybercab prototypes have frequently been spotted charging at standard Tesla Superchargers across the United States. This suggests the vehicle can easily operate within Tesla’s existing charging network even as the wireless system is developed and deployed. With this in mind, it would not be surprising if the first batches of the Cybercab that are deployed and delivered to consumers end up being charged by regular Superchargers.

DA-26-168A1 by Simon Alvarez

Advertisement
Continue Reading

Elon Musk

Tesla posts updated FSD safety stats as owners surpass 8 billion miles

Tesla shared the milestone as adoption of the system accelerates across several markets.

Published

on

Credit: Tesla

Tesla has posted updated safety stats for Full Self-Driving Supervised. The results were shared by the electric vehicle maker as FSD Supervised users passed more than 8 billion cumulative miles. 

Tesla shared the milestone in a post on its official X account.

“Tesla owners have now driven >8 billion miles on FSD Supervised,” the company wrote in its post on X. Tesla also included a graphic showing FSD Supervised’s miles driven before a collision, which far exceeds that of the United States average. 

The growth curve of FSD Supervised’s cumulative miles over the past five years has been notable. As noted in data shared by Tesla watcher Sawyer Merritt, annual FSD (Supervised) miles have increased from roughly 6 million in 2021 to 80 million in 2022, 670 million in 2023, 2.25 billion in 2024, and 4.25 billion in 2025. In just the first 50 days of 2026, Tesla owners logged another 1 billion miles.

Advertisement

At the current pace, the fleet is trending towards hitting about 10 billion FSD Supervised miles this year. The increase has been driven by Tesla’s growing vehicle fleet, periodic free trials, and expanding Robotaxi operations, among others.

Tesla also recently updated the safety data for FSD Supervised on its website, covering North America across all road types over the latest 12-month period.

As per Tesla’s figures, vehicles operating with FSD Supervised engaged recorded one major collision every 5,300,676 miles. In comparison, Teslas driven manually with Active Safety systems recorded one major collision every 2,175,763 miles, while Teslas driven manually without Active Safety recorded one major collision every 855,132 miles. The U.S. average during the same period was one major collision every 660,164 miles.

During the measured period, Tesla reported 830 total major collisions with FSD (Supervised) engaged, compared to 16,131 collisions for Teslas driven manually with Active Safety and 250 collisions for Teslas driven manually without Active Safety. Total miles logged exceeded 4.39 billion miles for FSD (Supervised) during the same timeframe.

Advertisement
Continue Reading