News
SpaceX launches NASA mission to study black holes, dead stars, and more
SpaceX has successfully launched NASA’s Imaging X-ray Polarimetry Explorer telescope, paving the way for a unique aspect of black holes, a variety of dead stars, and other odd phenomena to be explored in unprecedented breadth and detail.
Marking the first time a NASA payload has launched on the fifth flight of a reused SpaceX rocket, Falcon 9 booster B1061 lifted off at 1am EST (06:00 UTC) to kick off the 330 kg (~730 lb) IXPE spacecraft’s journey to orbit. SpaceX’s workhorse rocket performed flawlessly. Just over eight minutes after liftoff, Falcon 9’s upper stage completed the first of two planned burns, entering a low parking orbit. About thirty seconds later, Falcon 9 B1061 stuck its fifth drone ship landing in 13 months, marking the end of another successful high-profile launch for the booster and ensuring that it will be able to complete many more such launches over the next few years.

The first portion of the launch completed, Falcon 9’s upper stage then coasted in orbit for about 20 minutes before ignited for one last (very expensive) burn to place IXPE in its desired orbit. Known as a plane or inclination change, the maneuver – especially when performed deep in a large gravitational well – is exceptionally expensive, requiring an unintuitively large amount of launch vehicle performance (known as delta-V). The reason: IXPE’s nominal orbit is almost exactly equatorial, which Falcon 9’s Cape Canaveral launch site is about 28.5 degrees north of.
Lowering that inclination after launch requires a very energetic maneuver. Before Falcon 9 beat it out for the launch contract, IXPE was expected to launch on Orbital ATK’s air-launched Pegasus XL rocket, which would have allowed IXPE to be launched at the equator. However, SpaceX ultimately submitted a bid to launch IXPE for just ~$50M – cheaper than its competitor despite the fact that Falcon 9 is more than 20 times larger and could potentially launch an entire Pegasus XL into orbit. However, while Falcon 9 is designed to launch almost 23 tons into orbit in an expendable configuration and more than 16 tons with booster and fairing recovery, it’s only capable of launching about 1-2 tons to IXPE’s desired combination of an equatorial inclination and a ~600 km (~370 mi) orbit.
Ultimately, Falcon 9 completed the inclination change without issue, marking the successful completion of its first equatorial launch ever and SpaceX’s 28th successful launch in 2021 alone. Unlike a significant majority of spacecraft, IXPE was launched directly into its operational orbit and will likely need just a few days to refine its position and a few weeks after that for ground controllers to verify the health of all its systems and deploy a 4m (`13 ft) long ‘boom’ needed to operate its unique telescope.
If or when everything is up and running, IXPE will spend a minimum of two years observing at least 50 of the weirdest objects and phenomena in the universe. While many of those objects can’t be directly imaged, IXPE’s goal is to analyze the polarization of X-rays – high-energy beams of radiation – they produce at sensitivities two orders of magnitude greater than any previous experiment. In theory, that should allow IXPE to put long-held laws of relativity and quantum physics to the test in some of the most extreme environments in the universe, including particularly exotic nebulae (giant gas clouds), black holes, and bizarre neutron stars (including lighthouse-like pulsars and magnetars – dead stars with magnetic fields strong enough to compress atoms into cylindrical rods and make the actual vacuum of space refract light like a crystal).
News
Tesla Model Y is still China’s best-selling premium EV through October
The premium-priced SUV outpaced rivals despite a competitive field, while the Model 3 also secured an impressive position.
The Tesla Model Y led China’s top-selling pure electric vehicles in the 200,000–300,000 RMB segment through October 2025, as per Yiche data compiled from China Passenger Car Association (CPCA) figures.
The premium-priced SUV outpaced rivals despite a competitive field, while the Model 3 also secured an impressive position.
The Model Y is still unrivaled
The Model Y’s dominance shines in Yiche’s October report, topping the chart for vehicles priced between 200,000 and 300,000 RMB. With 312,331 units retailed from January through October, the all-electric crossover was China’s best-selling EV in the 200,000–300,000 RMB segment.
The Xiaomi SU7 is a strong challenger at No. 2 with 234,521 units, followed by the Tesla Model 3, which achieved 146,379 retail sales through October. The Model Y’s potentially biggest rival, the Xiaomi YU7, is currently at No. 4 with 80,855 retail units sold.


Efficiency kings
The Model 3 and Model Y recently claimed the top two spots in Autohome’s latest real-world energy-consumption test, outperforming a broad field of Chinese-market EVs under identical 120 km/h cruising conditions with 375 kg payload and fixed 24 °C cabin temperature. The Model 3 achieved 20.8 kWh/100 km while the Model Y recorded 21.8 kWh/100 km, reaffirming Tesla’s efficiency lead.
The results drew immediate attention from Xiaomi CEO Lei Jun, who publicly recognized Tesla’s advantage while pledging continued refinement for his brand’s lineup.
“The Xiaomi SU7’s energy consumption performance is also very good; you can take a closer look. The fact that its test results are weaker than Tesla’s is partly due to objective reasons: the Xiaomi SU7 is a C-segment car, larger and with higher specifications, making it heavier and naturally increasing energy consumption. Of course, we will continue to learn from Tesla and further optimize its energy consumption performance!” Lei Jun wrote in a post on Weibo.
Elon Musk
SpaceX’s Starship program is already bouncing back from Booster 18 fiasco
Just over a week since Booster 18 met its untimely end, SpaceX is now busy stacking Booster 19, and at a very rapid pace, too.
SpaceX is already bouncing back from the fiasco that it experienced during Starship Booster 18’s initial tests earlier this month.
Just over a week since Booster 18 met its untimely end, SpaceX is now busy stacking Booster 19, and at a very rapid pace, too.
Starship V3 Booster 19 is rising
As per Starbase watchers on X, SpaceX rolled out the fourth aft section of Booster 19 to Starbase’s MegaBay this weekend, stacking it to reach 15 rings tall with just a few sections remaining. This marks the fastest booster assembly to date at four sections in five days. This is quite impressive, and it bodes well for SpaceX’s Starship V3 program, which is expected to be a notable step up from the V2 program, which was retired after a flawless Flight 11.
Starship watcher TankWatchers noted the tempo on X, stating, “During the night the A4 section of Booster 19 rolled out to the MegaBay. With 4 sections in just 5 days, this is shaping up to be the fastest booster stack ever.” Fellow Starbase watcher TestFlight echoed the same sentiments. “Booster 19 is now 15 rings tall, with 3 aft sections remaining!” the space enthusiast wrote.
Aggressive targets despite Booster 18 fiasco
SpaceX’s V3 program encountered a speed bump earlier this month when Booster 18, just one day after rolling out into the factory, experienced a major anomaly during gas system pressure testing at SpaceX’s Massey facility in Starbase, Texas. While no propellant was loaded, no engines were installed, and no one was injured in the incident, the unexpected end of Booster 18 sparked speculation that the Starship V3 program could face delays.
Despite the Booster 18 fiasco, however, SpaceX announced that “Starship’s twelfth flight test remains targeted for the first quarter of 2026.” Elon Musk shared a similar timeline on X earlier this year, with the CEO stating that “ V3 is a massive upgrade from the current V2 and should be through production and testing by end of year, with heavy flight activity next year.”
Considering that Booster 19 seems to be moving through its production phases quickly, perhaps SpaceX’s Q1 2026 target for Flight 12 might indeed be more than feasible.
News
Elon Musk makes a key Tesla Optimus detail official
“Since we are naming the singular, we will also name the plural, so Optimi it is,” Musk wrote on X.
Tesla CEO Elon Musk just made a key detail about Optimus official. In a post on X, the CEO clarified some key wording about Optimus, which should help the media and the public become more familiar with the humanoid robot.
Elon Musk makes Optimus’ plural term official
Elon Musk posted a number of Optimus-related posts on X this weekend. On Saturday, he stated that Optimus would be the Von Neumann probe, a machine that could eventually be capable of replicating itself. This capability, it seems, would be the key to Tesla achieving Elon Musk’s ambitious Optimus production targets.
Amidst the conversations about Optimus on X, a user of the social media platform asked the CEO what the plural term for the humanoid robot will be. As per Musk, Tesla will be setting the plural term for Optimus since the company also decided on the robot’s singular term. “Since we are naming the singular, we will also name the plural, so Optimi it is,” Musk wrote in his reply on X.
This makes it official. For media outlets such as Teslarati, numerous Optimus bots are now called Optimi. It rolls off the tongue pretty well, too.
Optimi will be a common sight worldwide
While Musk’s comment may seem pretty mundane to some, it is actually very important. Optimus is intended to be Tesla’s highest volume product, with the CEO estimating that the humanoid robot could eventually see annual production rates in the hundreds of millions, perhaps even more. Since Optimi will be a very common sight worldwide, it is good that people can now get used to terms describing the humanoid robot.
During the Tesla 2025 Annual Shareholder Meeting, Musk stated that the humanoid robot will see “the fastest production ramp of any product of any large complex manufactured product ever,” starting with a one-million-Optimi-per-year production line at the Fremont Factory. Giga Texas would get an even bigger Optimus production line, which should be capable of producing tens of millions of Optimi per year.
