Connect with us

News

SpaceX preps second $500M fundraiser as Starlink & Starship make progress

Starship and Starlink are in need of major funding and investors appear to be happy to comply. (SpaceX)

Published

on

According to regulatory documents seen by Prime Unicorn Index, SpaceX finished a $500M funding round begun in December 2018 and kicked off a second campaign seeking an additional $500M earlier this month.

Altogether, SpaceX appears to be on track to secure $1 billion in fresh capital in the last six months alone, a trend that that may well continue as the company pushes forth into new and capital-intensive phases of Starlink and Starship development. In Boca Chica, a flood of SpaceX engineers and technicians have descended on the area to build the first full-scale steel prototypes of Starship and the major facilities needed to support the vehicles, all from scratch. Across the West Coast of the US, a separate SpaceX team has simultaneously transitioned from prototyping and developing satellites to building a factory to mass-produce them and may be less than six weeks away from launching the first operational batch of Starlink spacecraft.

Giant rockets, giant funding

Both massive, perilous, and largely unprecedented ventures in their own right, Starship (formerly BFR) and Starlink also happen to be extremely capital-intensive, a more or less fundamental consequence of the stages of their development and expansion. Both spent many years in pure research and development phases, tinkering and experimenting with different ideas and technologies on the ground in an effort to conceptualize what exactly their final forms ought to be. This aspect of the BFR program has been extremely visible over the last three years as SpaceX and CEO Elon Musk’s goals underwent continuous semi-annual changes, often intentionally broadcasted to the public in livestreamed events.

After appearing to finally settle on the quasi-final form of BFR (renamed to Starship/Super Heavy), SpaceX has actually begun to build and test the first full-scale, integrated prototype of the spacecraft (Starhopper) and is simultaneously building what aims to be the first orbital Starship prototype. At the same time, its propulsion system of choice – known as Raptor – has entered into serial production back at SpaceX’s Hawthorne factory, while also supporting the first Starhopper hop test in early April and preparing to continue separate ground testing.

SpaceX’s first (left) and second (right) Starship prototypes, seen on April 8th. (NASASpaceflight – bocachicagal)

Thousands of satellites, billions of dollars

In February 2018, SpaceX successfully launched its first Starlink satellites, two prototypes meant to test a bevy of technologies the company was attempting to build (or at least utilize) for the first time. Despite hints and reports of some problems on orbit, SpaceX firmly holds that both satellites were extremely successful in their task of proving out new technologies like electric thrusters and phased-array antennas and are still safely operating today. Just four months after those prototypes launched, CEO Elon Musk took the extraordinary step of flying to Redmond, Washington to personally challenge a number of executives he believed were operating far too sluggishly. According to secondhand reports, many of them refused to expedite the program as Musk wanted them to, resulting in their immediate firings. The challenge that triggered the organizational upheaval: launch the first operational batch of Starlink satellites before the end of June 2019, twelve months away at the time.

Five months after Musk’s challenge, SpaceX submitted a request to the FCC to modify its original Starlink constellation license, halving the orbit of the first thousand or so satellites to 550 km (340 mi) and significantly simplifying the technology on the first several dozen to be launched. As a result of the strategic changes made, SpaceX is already planning to launch its first group of Starlink satellites as early as mid-May, with perhaps one or several additional launches on the books for 2019. To an extent, the first 75 Starlink satellites and their six ground stations will be a nearly full-fidelity second prototype. Instead of a minimalist development platform like Tintin A and B, the first 75 satellites should offer opportunities to actually test the operations of a large constellation of spacecraft while also demonstrating something close to the internet connectivity the full constellation is meant to offer.

One of the first two prototype Starlink satellites deploys from Falcon 9’s upper stage, February 2018. (SpaceX)

Development to production

That SpaceX is attempting to raise huge amounts of capital should come as no surprise. For almost any commercial venture on Earth that is attempting to introduce a real product from nothing, the process of going from concept, design, and testing to building a final product at scale is both extraordinarily difficult and extremely expensive. Tesla famously went through “manufacturing hell” to go from Model 3 prototypes to a mass-producible finished product, while countless other ventures don’t even make it that far (i.e. vaporware). By far the most challenging aspect of this transition is moving from a phase focused predominately on development to one focused predominately on production.

Due to an extremely unorthodox approach to building the first steel Starship and Super Heavy prototypes, quite literally choosing to do so outside and without shelter, the BFR program is probably less extreme for the time being. However, the transformation needed for Starlink to progress is intense, requiring the satellite team to essentially build a factory from scratch and begin mass-producing high-performance satellites as quickly as possible. The 75-satellite buffer should ease the pain a bit and offer a sort of trial run as SpaceX makes that major transition, but the fact remains that an unprecedented number (thousands) of satellites will need to be built and launched at an equally unprecedented pace and cost-per-unit.

SpaceX already has a giant factory in Hawthorne, CA, but it remains packed to the brim with Falcon and Dragon production operations. (SpaceX)

The $500M raised since December 2018 will likely be a major help for SpaceX’s often-shoestrung development programs. The decision to open a second $500M funding round just months after the first also bodes well for demand, indicating that it shouldn’t be long before this newest round is itself completed. Meanwhile, Starlink’s first-launch milestone is rapidly approaching, while SpaceX’s South Texas team continue to make progress on the first orbital-class Starship prototype. Onward and upwards

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla CEO Elon Musk teases insane capabilities of next major FSD update

Published

on

Credit: Tesla China/Weibo

Tesla CEO Elon Musk teased the insane capabilities of the next major Full Self-Driving update just hours after the company rolled out version 14.2 to owners.

Tesla Full Self-Driving v14.2 had some major improvements from the previous iteration of v14.1.x. We were on v14.1.7, the most advanced configuration of the v14.1 family, before Tesla transitioned us and others to v14.2.

However, Musk has said that the improvements coming in the next major update, which will be v14.3, will be where “the last big piece of the puzzle finally lands.”

There were some major improvements with v14.2, most notably, Tesla seemed to narrow in on the triggers that caused issues with hesitation and brake stabbing in v14.1.x.

One of the most discussed issues with the past rollout was that of brake stabbing, where the vehicle would contemplate proceeding with a route as traffic was coming from other directions.

We experienced it most frequently at intersections, especially four-way stop signs.

Elon Musk hints at when Tesla can fix this FSD complaint with v14

In our review of it yesterday, it was evident that this issue had been resolved, at least to the extent that we had no issues with it in a 62-minute drive, which you can watch here.

Some owners also reported a more relaxed driver monitoring system, which is something Tesla said it was working on as it hopes to allow drivers to text during operation in the coming months. We did not test this, as laws in Pennsylvania prohibit the use of phones at any time due to the new Paul Miller’s Law, which took effect earlier this year.

However, the improvements indicate that Tesla is certainly headed toward a much more sentient FSD experience, so much so that Musk’s language seems to be more indicative of a more relaxed experience in terms of overall supervision from the driver, especially with v14.3.

Musk did not release or discuss a definitive timeline for the release of v14.3, especially as v14.2 just rolled out to Early Access Program (EAP) members yesterday. However, v14.1 rolled out to Tesla owners just a few weeks ago in late 2025. There is the potential that v14.3 could be part of the coming Holiday Update, or potentially in a release of its own before the New Year.

Continue Reading

News

Tesla Full Self-Driving v14.2 – Full Review, the Good and the Bad

Published

on

Credit: Teslarati

Tesla rolled out Full Self-Driving version 14.2 yesterday to members of the Early Access Program (EAP). Expectations were high, and Tesla surely delivered.

With the rollout of Tesla FSD v14.2, there were major benchmarks for improvement from the v14.1 suite, which spanned across seven improvements. Our final experience with v14.1 was with v14.1.7, and to be honest, things were good, but it felt like there were a handful of regressions from previous iterations.

While there were improvements in brake stabbing and hesitation, we did experience a few small interventions related to navigation and just overall performance. It was nothing major; there were no critical takeovers that required any major publicity, as they were more or less subjective things that I was not particularly comfortable with. Other drivers might have been more relaxed.

With v14.2 hitting our cars yesterday, there were a handful of things we truly noticed in terms of improvement, most notably the lack of brake stabbing and hesitation, a major complaint with v14.1.x.

However, in a 62-minute drive that was fully recorded, there were a lot of positives, and only one true complaint, which was something we haven’t had issues with in the past.

The Good

Lack of Brake Stabbing and Hesitation

Perhaps the most notable and publicized issue with v14.1.x was the presence of brake stabbing and hesitation. Arriving at intersections was particularly nerve-racking on the previous version simply because of this. At four-way stops, the car would not be assertive enough to take its turn, especially when other vehicles at the same intersection would inch forward or start to move.

This was a major problem.

However, there were no instances of this yesterday on our lengthy drive. It was much more assertive when arriving at these types of scenarios, but was also more patient when FSD knew it was not the car’s turn to proceed.

This improvement was the most noticeable throughout the drive, along with fixes in overall smoothness.

Speed Profiles Seem to Be More Reasonable

There were a handful of FSD v14 users who felt as if the loss of a Max Speed setting was a negative. However, these complaints will, in our opinion, begin to subside, especially as things have seemed to be refined quite nicely with v14.2.

Freeway driving is where this is especially noticeable. If it’s traveling too slow, just switch to a faster profile. If it’s too fast, switch to a slower profile. However, the speeds seem to be much more defined with each Speed Profile, which is something that I really find to be a huge advantage. Previously, you could tell the difference in speeds, but not in driving styles. At times, Standard felt a lot like Hurry. Now, you can clearly tell the difference between the two.

It seems as if Tesla made a goal that drivers should be able to tell which Speed Profile is active if it was not shown on the screen. With v14.1.x, this was not necessarily something that could be done. With v14.2, if someone tested me on which Speed Profile was being used, I’m fairly certain I could pick each one.

Better Overall Operation

I felt, at times, especially with v14.1.7, there were some jerky movements. Nothing that was super alarming, but there were times when things just felt a little more finicky than others.

v14.2 feels much smoother overall, with really great decision-making, lane changes that feel second nature, and a great speed of travel. It was a very comfortable ride.

The Bad

Parking

It feels as if there was a slight regression in parking quality, as both times v14.2 pulled into parking spots, I would have felt compelled to adjust manually if I were staying at my destinations. For the sake of testing, at my first destination, I arrived, allowed the car to park, and then left. At the tail-end of testing, I walked inside the store that FSD v14.2 drove me to, so I had to adjust the parking manually.

This was pretty disappointing. Apart from parking at Superchargers, which is always flawless, parking performance is something that needs some attention. The release notes for v14.2. state that parking spot selection and parking quality will improve with future versions.

However, this was truly my only complaint about v14.2.

You can check out our full 62-minute ride-along below:

Continue Reading

Elon Musk

SpaceX issues statement on Starship V3 Booster 18 anomaly

The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas. 

Published

on

Credit: SpaceX/X

SpaceX has issued an initial statement about Starship Booster 18’s anomaly early Friday. The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas. 

SpaceX’s initial comment

As per SpaceX in a post on its official account on social media platform X, Booster 18 was undergoing gas system pressure tests when the anomaly happened. Despite the nature of the incident, the company emphasized that no propellant was loaded, no engines were installed, and personnel were kept at a safe distance from the booster, resulting in zero injuries.

“Booster 18 suffered an anomaly during gas system pressure testing that we were conducting in advance of structural proof testing. No propellant was on the vehicle, and engines were not yet installed. The teams need time to investigate before we are confident of the cause. No one was injured as we maintain a safe distance for personnel during this type of testing. The site remains clear and we are working plans to safely reenter the site,” SpaceX wrote in its post on X. 

Incident and aftermath

Livestream footage from LabPadre showed Booster 18’s lower half crumpling around the liquid oxygen tank area at approximately 4:04 a.m. CT. Subsequent images posted by on-site observers revealed extensive deformation across the booster’s lower structure. Needless to say, spaceflight observers have noted that Booster 18 would likely be a complete loss due to its anomaly.

Booster 18 had rolled out only a day earlier and was one of the first vehicles in the Starship V3 program. The V3 series incorporates structural reinforcements and reliability upgrades intended to prepare Starship for rapid-reuse testing and eventual tower-catch operations. Elon Musk has been optimistic about Starship V3, previously noting on X that the spacecraft might be able to complete initial missions to Mars.

Advertisement
-->
Continue Reading