News
SpaceX preps second $500M fundraiser as Starlink & Starship make progress
According to regulatory documents seen by Prime Unicorn Index, SpaceX finished a $500M funding round begun in December 2018 and kicked off a second campaign seeking an additional $500M earlier this month.
Altogether, SpaceX appears to be on track to secure $1 billion in fresh capital in the last six months alone, a trend that that may well continue as the company pushes forth into new and capital-intensive phases of Starlink and Starship development. In Boca Chica, a flood of SpaceX engineers and technicians have descended on the area to build the first full-scale steel prototypes of Starship and the major facilities needed to support the vehicles, all from scratch. Across the West Coast of the US, a separate SpaceX team has simultaneously transitioned from prototyping and developing satellites to building a factory to mass-produce them and may be less than six weeks away from launching the first operational batch of Starlink spacecraft.
Giant rockets, giant funding
Both massive, perilous, and largely unprecedented ventures in their own right, Starship (formerly BFR) and Starlink also happen to be extremely capital-intensive, a more or less fundamental consequence of the stages of their development and expansion. Both spent many years in pure research and development phases, tinkering and experimenting with different ideas and technologies on the ground in an effort to conceptualize what exactly their final forms ought to be. This aspect of the BFR program has been extremely visible over the last three years as SpaceX and CEO Elon Musk’s goals underwent continuous semi-annual changes, often intentionally broadcasted to the public in
After appearing to finally settle on the quasi-final form of BFR (renamed to Starship/Super Heavy), SpaceX has actually begun to build and test the first full-scale, integrated prototype of the spacecraft (Starhopper) and is simultaneously building what aims to be the first orbital Starship prototype. At the same time, its propulsion system of choice – known as Raptor – has entered into serial production back at SpaceX’s Hawthorne factory, while also supporting the first Starhopper hop test in early April and preparing to continue separate ground testing.

Thousands of satellites, billions of dollars
In February 2018, SpaceX successfully launched its first Starlink satellites, two prototypes meant to test a bevy of technologies the company was attempting to build (or at least utilize) for the first time. Despite hints and reports of some problems on orbit, SpaceX firmly holds that both satellites were extremely successful in their task of proving out new technologies like electric thrusters and phased-array antennas and are still safely operating today. Just four months after those prototypes launched, CEO Elon Musk took the extraordinary step of flying to Redmond, Washington to personally challenge a number of executives he believed were operating far too sluggishly. According to secondhand reports, many of them refused to expedite the program as Musk wanted them to, resulting in their immediate firings. The challenge that triggered the organizational upheaval: launch the first operational batch of Starlink satellites before the end of June 2019, twelve months away at the time.
Five months after Musk’s challenge, SpaceX submitted a request to the FCC to modify its original Starlink constellation license, halving the orbit of the first thousand or so satellites to 550 km (340 mi) and significantly simplifying the technology on the first several dozen to be launched. As a result of the strategic changes made, SpaceX is already planning to launch its first group of Starlink satellites as early as mid-May, with perhaps one or several additional launches on the books for 2019. To an extent, the first 75 Starlink satellites and their six ground stations will be a nearly full-fidelity second prototype. Instead of a minimalist development platform like Tintin A and B, the first 75 satellites should offer opportunities to actually test the operations of a large constellation of spacecraft while also demonstrating something close to the internet connectivity the full constellation is meant to offer.

Development to production
That SpaceX is attempting to raise huge amounts of capital should come as no surprise. For almost any commercial venture on Earth that is attempting to introduce a real product from nothing, the process of going from concept, design, and testing to building a final product at scale is both extraordinarily difficult and extremely expensive. Tesla famously went through “manufacturing hell” to go from Model 3 prototypes to a mass-producible finished product, while countless other ventures don’t even make it that far (i.e. vaporware). By far the most challenging aspect of this transition is moving from a phase focused predominately on development to one focused predominately on production.
Due to an extremely unorthodox approach to building the first steel Starship and Super Heavy prototypes, quite literally choosing to do so outside and without shelter, the BFR program is probably less extreme for the time being. However, the transformation needed for Starlink to progress is intense, requiring the satellite team to essentially build a factory from scratch and begin mass-producing high-performance satellites as quickly as possible. The 75-satellite buffer should ease the pain a bit and offer a sort of trial run as SpaceX makes that major transition, but the fact remains that an unprecedented number (thousands) of satellites will need to be built and launched at an equally unprecedented pace and cost-per-unit.

The $500M raised since December 2018 will likely be a major help for SpaceX’s often-
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Investor's Corner
Tesla Full Self-Driving statistic impresses Wall Street firm: ‘Very close to unsupervised’
The data shows there was a significant jump in miles traveled between interventions as Tesla transitioned drivers to v14.1 back in October. The FSD Community Tracker saw a jump from 441 miles to over 9,200 miles, the most significant improvement in four years.
Tesla Full Self-Driving performance and statistics continue to impress everyone, from retail investors to Wall Street firms. However, one analyst believes Tesla’s driving suite is “very close” to achieving unsupervised self-driving.
On Tuesday, Piper Sandler analyst Alexander Potter said that Tesla’s recent launch of Full Self-Driving version 14 increased the number of miles traveled between interventions by a drastic margin, based on data compiled by a Full Self-Driving Community Tracker.
🚨 Piper Sandler reiterated its Overweight rating and $500 PT on Tesla $TSLA stock
Analyst Alexander Potter said FSD is near full autonomy and latest versions showed the largest improvement in disengagements, from 440 miles to 9,200 miles between critical interventions pic.twitter.com/u4WCLfZcA9
— TESLARATI (@Teslarati) December 9, 2025
The data shows there was a significant jump in miles traveled between interventions as Tesla transitioned drivers to v14.1 back in October. The FSD Community Tracker saw a jump from 441 miles to over 9,200 miles, the most significant improvement in four years.
Interestingly, there was a slight dip in the miles traveled between interventions with the release of v14.2. Piper Sandler said investor interest in FSD has increased.
Full Self-Driving has displayed several improvements with v14, including the introduction of Arrival Options that allow specific parking situations to be chosen by the driver prior to arriving at the destination. Owners can choose from Street Parking, Parking Garages, Parking Lots, Chargers, and Driveways.
Additionally, the overall improvements in performance from v13 have been evident through smoother operation, fewer mistakes during routine operation, and a more refined decision-making process.
Early versions of v14 exhibited stuttering and brake stabbing, but Tesla did a great job of confronting the issue and eliminating it altogether with the release of v14.2.
Tesla CEO Elon Musk also recently stated that the current v14.2 FSD suite is also less restrictive with drivers looking at their phones, which has caused some controversy within the community.
Although we tested it and found there were fewer nudges by the driver monitoring system to push eyes back to the road, we still would not recommend it due to laws and regulations.
Tesla Full Self-Driving v14.2.1 texting and driving: we tested it
With that being said, FSD is improving significantly with each larger rollout, and Musk believes the final piece of the puzzle will be unveiled with FSD v14.3, which could come later this year or early in 2026.
Piper Sandler reaffirmed its $500 price target on Tesla shares, as well as its ‘Overweight’ rating.
News
Tesla begins Holiday Update rollout with some surprise features
On Monday, just a few days after Tesla first announced the Holiday Update, people started reporting that it was being deployed to owners.
Tesla has started the rollout of the 2025 Holiday Update, as several owners reported it had arrived in their cars via a software update.
Tesla’s Holiday Update is rolling out as Software Version 2025.44.25.1, and includes several new features. We did an extensive breakdown of what was included in another article, but we’ll list the new additions below:
- Grok with Navigation Commands (Beta) – Grok will now add and edit destinations.
- Tesla Photobooth – Take pictures inside your car using the cabin-facing camera
- Dog Mode Live Activity – Check on your four-legged friend on your phone through periodic snapshots taken of the cabin
- Dashcam Viewer Update – Includes new metrics, like steering wheel angle, speed, and more
- Santa Mode – New graphics, trees, and a lock chime
- Light Show Update – Addition of Jingle Rush light show
- Custom Wraps and License Plates – Colorizer now allows you to customize your vehicle even further, with custom patterns, license plates, and tint
- Navigation Improvements – Easier layout and setup
- Supercharger Site Map – Starting at 18 pilot locations, a 3D view of the Supercharger you’re visiting will be available
- Automatic Carpool Lane Routing – Navigation will utilize carpool lanes if enabled
- Phone Left Behind Chime – Your car will now tell you if you left a phone inside
- Charge Limit Per Location – Set a charge limit for each location
- ISS Docking Simulator – New game
- Additional Improvements – Turn off wireless charging pad, Spotify improvements, Rainbow Rave Cave, Lock Sound TRON addition
On Monday, just a few days after Tesla first announced the Holiday Update, people started reporting that it was being deployed to owners.
We noticed a new Tesla software update 2025.44.25.1 on a Model Y AWD LR (2022) in Florida, United States. View the rollout of this update here: https://t.co/rPqISQaNkM
— Teslascope (@teslascope) December 8, 2025
It seems the release is a bit of an apology to a particular group, as it has only made its way to Hardware 3 vehicles, particularly the ones using the AMD Ryzen chip.
Tesla has excluded FSD-purchased and subscribed vehicles that are utilizing Hardware 3, so it seems there is a strategy to this limited rollout.
Two Surprise Additions
Tesla has added two additional features with the Holiday Update, which include a new Storage Space for Dashcam feature that shows how much space you have used and remaining on your USB drive.
Additionally, Tesla gamified Supercharging with a new “Charging Passport” feature, which we reported on earlier today.
News
Tesla announces major milestone at Gigafactory Shanghai
First deliveries started in December 2019, with the first units being given to employees. By the end of 2020, the plant was building cars at a run rate of around 150,000 vehicles annually.
Tesla has announced a major milestone at its Chinese manufacturing facility, Gigafactory Shanghai, confirming on Monday that it had built its four millionth vehicle.
Tesla Gigafactory Shanghai first started building cars back in October 2019 with Model 3 assembly, just ten months after the company broke ground on the plant’s 86-hectare piece of land.
First deliveries started in December 2019, with the first units being given to employees. By the end of 2020, the plant was building cars at a run rate of around 150,000 vehicles annually. Production continued to ramp up, and by September 2023, less than three years after it started building Tesla’s EVs, it had built its two millionth vehicle.
Fast forward to December 2025, and Tesla has confirmed that four million cars have rolled off of production lines at the plant, a major milestone in the six short years it has been active:
Produced our 4 millionth vehicle at Gigafactory Shanghai🎉
Thanks to all our owners and supporters❤️ pic.twitter.com/DayVXUr220— Tesla Asia (@Tesla_Asia) December 8, 2025
The capacity at Giga Shanghai is exceeding 950,000 vehicles per year, and this year, the company has delivered 675,000 cars through the first three quarters. It is also the only plant to manufacture the Model Y L, a longer wheel-based configuration of the all-electric crossover that is exclusive to the Chinese market.
Gigafactory Shanghai’s four million cars have not all stayed within the domestic market, either. For a considerable period, the factory was exporting a significant portion of its monthly production to Europe, helping Gigafactory Berlin supplement some Model Y volume and all of its Model 3 deliveries. This is due to the Berlin plant’s exclusive production plans for the Model 3.
The site is one of the most crucial in the company’s global plans, and Gigafactory Shanghai’s incredible pace, which has led to four million production units in just about six years. It’s fair to say that it won’t be long until we’re seeing Tesla celebrate the plant’s five millionth vehicle produced, which should happen sometime late next year or in early 2027, based on its current manufacturing pace.
The company also builds the Megapack on the property in an adjacent Megafactory.