Connect with us

News

SpaceX rocket booster heads west for first California launch in more than a year

SpaceX's first California launch in more than a year could be just a handful of months away. (SpaceX)

Published

on

For the first time in more than 16 months, a SpaceX Falcon 9 rocket booster has been spotted heading west towards the company’s California pad, a sure sign that the next West Coast launch is just over the horizon.

First spotted in West Texas on August 20th, the Falcon 9 booster – wrapped in a class black plastic cocoon – was captured a second time three days later between Arizona and California. The rocket wrapped up the ~2600 kilometer (~1600 mi) journey from SpaceX’s McGregor, Texas development and test facilities early on August 24th, arriving at the company’s Vandenberg Air Force Base (VAFB) Space Launch Complex 4 (SLC-4) facilities.

At least according to publicly-available launch manifests, the unknown Falcon 9 booster will be spending a fair bit of time in SpaceX’s SLC-4E hangar before its first Californian launch. Still, considering that many misinterpreted a year-old regulatory document as confirmation of SpaceX’s permanent withdrawal from VAFB just earlier this month, a surprise booster arrival is an encouraging sign.

SpaceX’s first California launch in more than a year could be just a handful of months away. (SpaceX)

As of now, SpaceX has two or three possible West Coast missions scheduled in the last few months of 2020, but there’s a strong chance that they’ll suffer delays as they near their tentative launch dates. Up first is the joint NASA-ESA Sentinel 6A (Sentinel 6 Michael Freilich, Jason-CS A) ocean topography satellite, one of two new spacecraft meant to continue work done by the Jason-3 spacecraft (launched by SpaceX in 2016). According to a joint review completed on June 25th and referenced in an official document (PDF), SpaceX and NASA are working towards the first Sentinel 6A launch attempt no earlier than (NET) November 10th, 2020.

NASA awarded SpaceX the $97 million launch contract in 2017, all but guaranteeing that Sentinel 6A will fly on a brand new Falcon 9 booster. The fact that the booster spotted in transport over the last week was never seen East of Texas strongly implies that it’s a new Falcon 9 SpaceX tested in McGregor before shipping back to California, in which case Sentinel 6A is almost certainly SpaceX’s next VAFB launch.

Built by Airbus, the Sentinel 6A satellite weighs around 1500 kg (3300 lb) and will likely fly to California within the next 1-2 months. (ESA)

In the likely event that the booster that arrived at VAFB on August 24th is unflown, it’s probably Falcon 9 B1063. Germany’s SARah-1 radar imaging satellite is possibly the only other West Coast launch on SpaceX’s manifest that could warrant sending a new booster to California, but recent signs point towards that ~2200 kg (4850 lb) spacecraft launching in Q1 2021 (a delay from Q4 2020) as part of a dedicated SpaceX rideshare mission.

Less likely, SARah-1 could have been manifested on SpaceX’s first dedicated rideshare mission, scheduled to launch in December 2020. Either way, as fairly complex and expensive one-off science spacecraft, both SARah-1 and Sentinel 6A are liable to slip right from their current launch targets, meaning that Falcon 9 B1063 will likely spend at least 2-3 months in storage between now and the start of its first launch flow.

A panorama of SpaceX’s VAFB SLC-4 launch pad and Landing Zone-4. (Eric Ralph)
Falcon 9 B1049 readies for its January 2019 Iridium NEXT-8 launch from SLC-4E. (SpaceX)

Regardless of the payload or the first stage launching it, SpaceX shipped its former West Coast drone ship landing platform to Florida more than a year ago. Any Falcon 9 booster launching from California will thus have to be expended or land back on land at LZ-4.

While SpaceX and its mystery Falcon 9 booster wait for their next West Coast launch, the company will likely take advantage of the opportunity to familiarize an almost entirely new team of pad and launch engineers and technicians. After its June 2019 Radarsat Constellation Mission launch, SpaceX effectively mothballed its Vandenberg pad and either laid off or transferred the vast majority of employees specific to SLC-4. SpaceX began hiring to rebuild that team in early 2020.

Thanks to a major multi-launch US military contract SpaceX won just a few weeks ago, the company’s Vandenberg facilities are all but guaranteed to remain active – even if only intermittently so – for most of the 2020s.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla rolls out new Supercharging safety feature in the U.S.

Published

on

tesla's nacs charging connector
Credit: Tesla

Tesla has rolled out a new Supercharging safety feature in the United States, one that will answer concerns that some owners may have if they need to leave in a pinch.

It is also a suitable alternative for non-Tesla chargers, like third-party options that feature J1772 or CCS to NACS adapters.

The feature has been available in Europe for some time, but it is now rolling out to Model 3 and Model Y owners in the U.S.

With Software Update 2026.2.3, Tesla is launching the Unlatching Charge Cable function, which will now utilize the left rear door handle to release the charging cable from the port. The release notes state:

“Charging can now be stopped and the charge cable released by pulling and holding the rear left door handle for three seconds, provided the vehicle is unlocked, and a recognized key is nearby. This is especially useful when the charge cable doesn’t have an unlatch button. You can still release the cable using the vehicle touchscreen or the Tesla app.”

The feature was first spotted by Not a Tesla App.

This is an especially nice feature for those who commonly charge at third-party locations that utilize plugs that are not NACS, which is the Tesla standard.

For example, after plugging into a J1772 charger, you will still be required to unlock the port through the touchscreen, which is a minor inconvenience, but an inconvenience nonetheless.

Additionally, it could be viewed as a safety feature, especially if you’re in need of unlocking the charger from your car in a pinch. Simply holding open the handle on the rear driver’s door will now unhatch the port from the car, allowing you to pull it out and place it back in its housing.

This feature is currently only available on the Model 3 and Model Y, so Model S, Model X, and Cybertruck owners will have to wait for a different solution to this particular feature.

Continue Reading

News

LG Energy Solution pursuing battery deal for Tesla Optimus, other humanoid robots: report

Optimus is expected to be one of Tesla’s most ambitious projects, with Elon Musk estimating that the humanoid robot could be the company’s most important product.

Published

on

Credit: Tesla Optimus/X

A recent report has suggested that LG Energy Solution is in discussions to supply batteries for Tesla’s Optimus humanoid robot.

Optimus is expected to be one of Tesla’s most ambitious projects, with Elon Musk estimating that the humanoid robot could be the company’s most important product.

Humanoid robot battery deals

LG Energy Solution shares jumped more than 11% on the 28th after a report from the Korea Economic Daily claimed that the company is pursuing battery supply and joint development agreements with several humanoid robot makers. These reportedly include Tesla, which is developing Optimus, as well as multiple Chinese robotics companies.

China is already home to several leading battery manufacturers, such as CATL and BYD, making the robot makers’ reported interest in LG Energy Solution quite interesting. Market participants interpreted the reported outreach as a signal that performance requirements for humanoid robots may favor battery chemistries developed by companies like LG.

LF Energy Solution vs rivals

According to the report, energy density is believed to be the primary reason humanoid robot developers are evaluating LG Energy Solution’s batteries. Unlike electric vehicles, humanoid robots have significantly less space available for battery packs while requiring substantial power to operate dozens of joint motors and onboard artificial intelligence processors.

LG Energy Solution’s ternary lithium batteries offer higher energy density compared with rivals’ lithium iron phosphate (LFP) batteries, which are widely used by Chinese EV manufacturers. That advantage could prove critical for humanoid robots, where runtime, weight, and compact packaging are key design constraints.

Continue Reading

News

Tesla receives approval for FSD Supervised tests in Sweden

Tesla confirmed that it has been granted permission to test FSD Supervised vehicles across Sweden in a press release.

Published

on

Credit: Grok Imagine

Tesla has received regulatory approval to begin tests of its Full Self-Driving Supervised system on public roads in Sweden, a notable step in the company’s efforts to secure FSD approval for the wider European market. 

FSD Supervised testing in Sweden

Tesla confirmed that it has been granted permission to test FSD Supervised vehicles across Sweden following cooperation with national authorities and local municipalities. The approval covers the Swedish Transport Administration’s entire road network, as well as urban and highways in the Municipality of Nacka.

Tesla shared some insights into its recent FSD approvals in a press release. “The approval shows that cooperation between authorities, municipalities and businesses enables technological leaps and Nacka Municipality is the first to become part of the transport system of the future. The fact that the driving of the future is also being tested on Swedish roads is an important step in the development towards autonomy in real everyday traffic,” the company noted. 

With approval secured for FSD tests, Tesla can now evaluate the system’s performance in diverse environments, including dense urban areas and high-speed roadways across Sweden, as noted in a report from Allt Om Elbil. Tesla highlighted that the continued development of advanced driver assistance systems is expected to pave the way for improved traffic safety, increased accessibility, and lower emissions, particularly in populated city centers.

Tesla FSD Supervised Europe rollout

FSD Supervised is already available to drivers in several global markets, including Australia, Canada, China, Mexico, New Zealand, and the United States. The system is capable of handling city and highway driving tasks such as steering, acceleration, braking, and lane changes, though it still requires drivers to supervise the vehicle’s operations.

Tesla has stated that FSD Supervised has accumulated extensive driving data from its existing markets. In Europe, however, deployment remains subject to regulatory approval, with Tesla currently awaiting clearance from relevant authorities.

The company reiterated that it expects to start rolling out FSD Supervised to European customers in early 2026, pending approvals. It would then be unsurprising if the company secures approvals for FSD tests in other European territories in the coming months. 

Continue Reading