News
SpaceX's next Crew Dragon launch is delayed but that's actually good news
NASA says that SpaceX’s next big Crew Dragon flight test has slipped a bit further into 2020, a counterintuitively positive sign that the human-rated spacecraft’s next launch is firmly scheduled for the first month of the next decade.
Known as Crew Dragon’s In-Flight Abort (IFA) test, SpaceX opted to include the mission in its Commercial Crew contract, a decision NASA chose to leave up to its providers. Boeing, for example, chose not to perform a real-world in-flight abort test of its Starliner spacecraft, instead relying on a pad abort test and digital modeling to determine the spacecraft’s capabilities. NASA allowed this flexibility because it believes – at least theoretically – that it should be possible to determine whether a spacecraft can perform the most challenging abort scenarios without actually doing full-fidelity flight tests.
Given that NASA chose to perform an extremely expensive full-fidelity in-flight abort test with its own Orion spacecraft just a few months ago, one can’t exactly say that the space agency has chosen to reap what it’s sown, but with any luck, the Starliner spacecraft will never have to perform such an abort and find out how close Boeing’s modeling is to reality.
It’s also worth noting that despite the fact SpaceX elected to perform an extra abort test that will likely destroy an entire Falcon 9 rocket, Crew Dragon development will cost NASA $2 billion (40%) less than Starliner, while each operational Crew Dragon launch will also cost some $250 million (39%) less than a comparable Starliner launch.
As of December 18th, NASA says that SpaceX’s In-Flight Abort (IFA) test has slipped a week from January 4th to January 11th, 2020. Counterintuitively, that delay is actually an extremely encouraging sign that Crew Dragon’s next launch is quite firmly set for the first month of 2020. For reference, as NASA and SpaceX approached Crew Dragon’s Demo-1 orbital launch debut earlier this year, the mission was initially set for January 17th. Around three weeks later, NASA announced that Demo-1 had slipped to no earlier than (NET) “February”. Four weeks after that delay, NASA once again announced another delay to March 2nd, which would turn out to be the day that Crew Dragon really did reach orbit for the first time.

On the other hand, IFA – Crew Dragon’s second launch – had its first firm launch date (January 4th) announced by NASA on December 6th, 2019. Less than two weeks later, NASA says that the launch date has slipped by exactly one week to January 11th, less than four weeks from today. It’s entirely possible that SpaceX’s IFA test will slip further into 2020 in the coming weeks, but compared to Crew Dragon’s Demo-1 mission, both NASA and SpaceX appear to be far more confident in the schedule for Crew Dragon’s second launch.
Regardless of when exactly it lifts off, Crew Dragon’s In-Flight Abort is going to be an extremely challenging test for the spacecraft. Designed to simulate a near-worst-case abort scenario during launch, SpaceX will essentially trick Dragon into believing that Falcon 9 has failed around a minute and a half after launch. At that point, the rocket and spacecraft will be traveling as fast as Mach 2.5 (860 m/s, 1900 mph) and experiencing what is known as Max Q, the point of peak aerodynamic stress (referring to heating, buffeting, pressure, and more).
At that exact point, Crew Dragon capsule C205 will ignite all eight of its SuperDraco abort engines, almost instantaneously producing 130,000 lbf (570 kN) of thrust to send the spacecraft almost a kilometer (0.5 mi) away from Falcon 9 in just a few seconds. If Crew Dragon survives the ordeal, it will quickly detach its trunk section, flip around to face its heat shield towards the ground, and ultimately deploy parachutes before gently landing in the Atlantic Ocean.
SpaceX plans to recover and reuse the otherwise orbit-worthy capsule on a future mission, likely one of the company’s upcoming CRS2 space station resupply launches. Finally, if everything goes exactly as planned during the In-Flight Abort test and both NASA and SpaceX see no issues with the flown hardware or data the test produces, Crew Dragon Demo-2 – the spacecraft’s first astronaut launch – could potentially be ready for flight as early as February or March 2020.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Elon Musk
SpaceX is exploring a “Starlink Phone” for direct-to-device internet services: report
The update was reportedly shared to Reuters by people familiar with the matter.
SpaceX is reportedly exploring new products tied to Starlink, including a potential Starlink-branded phone.
The update was reportedly shared to Reuters by people familiar with the matter.
A possible Starlink Phone
As per Reuters’ sources, SpaceX has reportedly discussed building a mobile device designed to connect directly to the Starlink satellite constellation. Details about the potential device and its possible release are still unclear, however.
SpaceX has dabbled with mobile solutions in the past. The company has partnered with T-Mobile to provide Starlink connectivity to existing smartphones. And last year, SpaceX initiated a $19.6 billion purchase of satellite spectrum from EchoStar.
Elon Musk did acknowledge the idea of a potential mobile device recently on X, writing that a Starlink phone is “not out of the question at some point.” Unlike conventional smartphones, however, Musk described a device that is “optimized purely for running max performance/watt neural nets.”
Starlink and SpaceX’s revenue
Starlink has become SpaceX’s dominant commercial business. Reuters’ sources claimed that the private space company generated roughly $15–$16 billion in revenue last year, with about $8 billion in profit. Starlink is estimated to have accounted for 50% to 80% of SpaceX’s total revenue last year.
SpaceX now operates more than 9,500 Starlink satellites and serves over 9 million users worldwide. About 650 satellites are already dedicated to SpaceX’s direct-to-device initiative, which aims to eventually provide full cellular coverage globally.
Future expansion of Starlink’s mobile capabilities depends heavily on Starship, which is designed to launch larger batches of upgraded Starlink satellites. Musk has stated that each Starship launch carrying Starlink satellites could increase network capacity by “more than 20 times.”
Elon Musk
FCC accepts SpaceX filing for 1 million orbital data center plan
The move formally places SpaceX’s “Orbital Data Center” concept into the FCC’s review process.
The Federal Communications Commission (FCC) has accepted SpaceX’s filing for a new non-geostationary orbit (NGSO) satellite system of up to one million spacecraft and has opened the proposal for public comment.
The move formally places SpaceX’s “Orbital Data Center” concept into the FCC’s review process, marking the first regulatory step for the ambitious space-based computing network.
FCC opens SpaceX’s proposal for comment
In a public notice, the FCC’s Space Bureau stated that it is accepting SpaceX’s application to deploy a new non-geostationary satellite system known as the “SpaceX Orbital Data Center system.” As per the filing, the system would consist of “up to one million satellites” operating at altitudes between 500 and 2,000 kilometers, using optical inter-satellite links for data transmission.
The FCC notice described the proposal as a long-term effort. SpaceX wrote that the system would represent the “first step towards becoming a Kardashev II-level civilization – one that can harness the Sun’s full power.” The satellites would rely heavily on high-bandwidth optical links and conduct telemetry, tracking, and command operations, with traffic routed through space-based laser networks before being sent to authorized ground stations.
FCC Chairman Brendan Carr highlighted the filing in a post on X, noting that the Commission is now seeking public comment on SpaceX’s proposal. Interested parties have until early March to submit comments.
What SpaceX is proposing to build
As per the FCC’s release, SpaceX’s orbital data center system would operate alongside its existing and planned Starlink constellations. The FCC notice noted that the proposed satellites may connect not only with others in the new system, but also with satellites in SpaceX’s first- and second-generation Starlink networks.
The filing also outlined several waiver requests, including exemptions from certain NGSO milestone and surety bond requirements, as well as flexibility in how orbital planes and communication beams are disclosed, as noted in a Benzinga report. SpaceX noted that these waivers are necessary to support the scale and architecture of the proposed system.
As noted in coverage of the filing, the proposal does not represent an immediate deployment plan, but rather a framework for future space-based computing infrastructure. SpaceX has discussed the idea of moving energy-intensive computing, such as AI workloads, into orbit, where continuous solar power and large physical scale could reduce constraints faced on Earth.
Elon Musk
Elon Musk’s Boring Company signs deal to begin Dubai Loop project
The project marks the Boring Company’s first tunneling project outside the United States.
Elon Musk’s Boring Company has signed a definitive agreement with Dubai’s Roads and Transport Authority to begin implementing the Dubai Loop.
The project marks the Boring Company’s first tunneling project outside the United States.
The Boring Company signs Dubai Loop agreement
The Boring Company signed a partnership agreement with Dubai Roads and Transport Authority on the sidelines of the World Governments Summit 2026 to start the implementation of the Dubai Loop, as per the tunneling startup in a blog post.
The agreement was signed on behalf of Dubai RTA by Mattar Al Tayer, director general and chairman of the Board of Executive Directors, and on behalf of The Boring Company by James Fitzgerald, the startup’s global vice president of business development. Senior officials from both organizations were present at the signing ceremony.
The Dubai Loop project is intended to improve passenger mobility in high-density urban areas through underground vehicle tunnels designed for faster construction and lower surface disruption than conventional transport systems.
Pilot route and project scope outlined
The first phase of the Dubai Loop will consist of a 4-mile (6.4 km) pilot route with four stations linking the Dubai International Financial Centre and Dubai Mall. The pilot phase is expected to pave the way for a full network extending up to 14 miles (22.5 km) with 19 stations connecting the Dubai World Trade Centre, the financial district, and Business Bay.
The tunnels will have a diameter of 12 feet (3.6 meters) and will be dedicated to vehicle transport. Construction will rely on tunneling methods designed to reduce costs and minimize disruption to existing infrastructure.
The pilot phase is estimated to cost about $154 million, with delivery expected roughly one year after design work and preparatory activities are completed. The full Dubai Loop network is projected to cost approximately $545 million and would take around three years to implement.
Capacity targets and next steps
Mattar Al Tayer shared his excitement about the project, stating that the Loop system will be a qualitative addition to the city’s transportation system. “The project represents a qualitative addition to Dubai’s transport ecosystem, as it enhances integration between different mobility modes and provides flexible and efficient first- and last-mile solutions.
“Studies have demonstrated the project’s efficiency in terms of capacity and operating costs, with the pilot route expected to serve around 13,000 passengers per day, while the full route is projected to have a total capacity of approximately 30,000 passengers per day,” he said.
Steve Davis, president of The Boring Company, highlighted that the partnership aims to deliver safe and efficient tunneling solutions aligned with Dubai’s long-term mobility strategy.
“We are proud to partner with the Roads and Transport Authority, one of the world’s leading entities in adopting innovative solutions in the transport sector. Through this partnership, we look forward to delivering advanced, safe, and highly efficient tunnelling solutions that support Dubai’s vision for sustainable and future mobility,” Davis stated.