Connect with us

News

SpaceX’s next rocket fairing reuse milestone within reach after latest recovery

SpaceX has successfully recovered a reused Falcon payload fairing - intact - for the first time ever. (Richard Angle)

Published

on

SpaceX’s next major Falcon 9 fairing reuse milestone is now within reach after the company managed to successfully recover an entire reused nosecone with both halves intact.

On June 13th, a flight-proven Falcon 9 rocket lifted off on the seventh Starlink mission of 2020 and ninth launch overall, also marking SpaceX’s third reuse of a payload fairing since the first flight-proven nosecone flew in November 2019. As usual, Falcon 9’s upper stage commanded fairing deployment around three minutes after launch, leaving the house-sized shells to coast to an apogee of ~150 km (~93 mi) before falling back down to Earth. Once safely through reentry, both halves deployed GPS-guided parafoils and flew in the direction of two recovery ships, gliding for more than half an hour.

Unfortunately, although they likely got close, recovery ships GO Ms Tree and Ms Chief were unable to catch the parasailing fairings in their football field-size nets, leaving them to gently splash down in the Atlantic Ocean. Technicians were able to fish them out of the water with smaller onboard nets soon after and the ships sailed into port less than 36 hours later.

Preventing a vast majority of seawater exposure, a catch with Ms. Tree or Ms. Chief may always be preferable for fairing reuse but the fact remains that all three successful reuses up to this point have been achieved with fairing halves that landed in the ocean. That success means that SpaceX has found a way to fully prevent or mitigate any potential corrosion that might result from seawater immersion. Given that that problem must have been a showstopper for the ~2.5 years SpaceX was able to recover – but not reuse – intact fairings, it’s safe to say that the company’s engineers have more or less solved the problem of corrosion.

Advertisement
This appears to be the half of the JCSAT-18/Kacific-1 Falcon fairing that SpaceX didn’t reuse on Starlink V1 L8. (Richard Angle)
Other post-splashdown fairing recovery attempts have been decidedly less successful. (Richard Angle)

In fewer words, although there has yet to be any official confirmation that Falcon 9 fairings are capable of flying more than twice, there’s good reason to believe that the design upgrade that enabled one reuse had some built-in headroom. If that’s true, then one or both of the twice-flown fairing halves that safely returned to dry land on June 14th could fly for the third time just a few months from now – less than a year after the first reuse. For reference, it took SpaceX some ~33 months to go from the first reuse of a Falcon 9 first stage to the second reuse (third flight) of a single booster.

With as many as 13-17 more Starlink launches still on SpaceX’s 2020 manifest, there will be no shortage of opportunities for such a fairing reuse milestone – if possible – over the next six months. SpaceX’s next Starlink launch – the third launch in June alone and tenth mission overall – is scheduled no earlier than (NET) 6:20 pm EDT (22:20 UTC), June 22nd.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Comments

News

Tesla teases new market entrance with confusing and cryptic message

Published

on

(Credit: Tesla)

Tesla teased its entrance into a new market with a confusing and what appeared to be cryptic message on the social media platform X.

The company has been teasing its entrance into several markets, including Africa, which would be a first, and South America, where it only operates in Chile.

In September, Tesla started creating active job postings for the Colombian market, hinting it would expand its presence in South America and launch in a new country for the first time in two years.

Tesla job postings seem to show next surprise market entry

The jobs were related to various roles, including Associate Sales Manager, Advisors in Sales and Delivery, and Service Technicians. These are all roles that would indicate Tesla is planning to launch a wide-scale effort to sell, manage, and repair vehicles in the market.

Last night, Tesla posted its latest hint, a cryptic video that seems to show the outline of Colombia, teasing its closer than ever to market entry:

This would be the next expansion into a continent where it does not have much of a presence for Tesla. Currently, there are only two Supercharger locations on the entire continent, and they’re both in Chile.

Tesla will obviously need to expand upon this crucial part of the ownership experience to enable a more confident consumer base in South America as a whole. However, it is not impossible, as many other EV charging infrastructures are available, and home charging is always a suitable option for those who have access to it.

Surprisingly, Tesla seems to be more concerned about these middle-market countries as opposed to the larger markets in South America, but that could be by design.

If Tesla were to launch in Brazil initially, it may not be able to handle the uptick in demand, and infrastructure expansion could be more difficult. Brazil may be on its list in the upcoming years, but not as of right now.

Continue Reading

News

Tesla expands crucial Supercharging feature for easier access

It is a useful tool, especially during hours of congestion. However, it has not been super effective for those who drive non-Tesla EVs, as other OEMs use UI platforms like Google’s Android Auto or Apple’s iOS.

Published

on

tesla supercharger
Credit: Tesla

Tesla has expanded a crucial Supercharging feature that helps owners identify stall availability at nearby locations.

Tesla said on Tuesday night that its “Live Availability” feature, which shows EV owners how many stalls are available at a Supercharger station, to Google Maps, a third-party app:

Already offering it in its own vehicles, the Live Availability feature that Teslas have is a helpful feature that helps you choose an appropriate station with plugs that are immediately available.

A number on an icon where the Supercharger is located lets EV drivers know how many stalls are available.

It is a useful tool, especially during hours of congestion. However, it has not been super effective for those who drive non-Tesla EVs, as other OEMs use UI platforms like Google’s Android Auto or Apple’s iOS.

Essentially, when those drivers needed to charge at a Supercharger that enables non-Tesla EVs to plug in, there was a bit more of a gamble. There was no guarantee that a plug would be available, and with no way to see how many are open, it was a risk.

Tesla adding this feature allows people to have a more convenient and easier-to-use experience if they are in a non-Tesla EV. With the already expansive Supercharger Network being available to so many EV owners, there is more congestion than ever.

This new feature makes the entire experience better for all owners, especially as there is more transparency regarding the availability of plugs at Supercharger stalls.

It will be interesting to see if Tesla is able to expand on this new move, as Apple Maps compatibility is an obvious goal of the company’s in the future, we could imagine. In fact, this is one of the first times an Android Auto feature is available to those owners before it became an option for iOS users.

Apple owners tend to get priority with new features within the Tesla App itself.

Continue Reading

Elon Musk

Elon Musk’s Boring Co goes extra hard in Nashville with first rock-crushing TBM

The Boring Company’s machine for the project is now in final testing.

Published

on

Credit: The Boring Company/X

The Boring Company is gearing up to tackle one of its toughest projects yet, a new tunnel system beneath Nashville’s notoriously tough limestone terrain. Unlike the soft-soil conditions of Las Vegas and Austin, the Music City Loop will require a “hard-rock” boring machine capable of drilling through dense, erosion-resistant bedrock. 

The Boring Company’s machine for the project is now in final testing.

A boring hard-rock tunneling machine

The Boring Company revealed on X that its new hard-rock TBM can generate up to 4 million pounds of grip force and 1.5 million pounds of maximum thrust load. It also features a 15-filter dust removal system designed to keep operations clean and efficient during excavation even in places where hard rock is present.

Previous Boring Co. projects, including its Loop tunnels in Las Vegas, Austin, and Bastrop, were dug primarily through soft soils. Nashville’s geology, however, poses a different challenge. Boring Company CEO and President Steve Davis mentioned this challenge during the project’s announcement in late July.

“It’s a tough place to tunnel, Nashville. If we were optimizing for the easiest places to tunnel, it would not be here. You have extremely hard rock, like way harder than it should be. It’s an engineering problem that’s fairly easy and straightforward to solve,” Davis said.

Advertisement

Nashville’s limestone terrain

Experts have stated that the city’s subsurface conditions make it one of the more complex tunneling environments in the U.S. The Outer Nashville Basin is composed of cherty Mississippian-age limestone, a strong yet soluble rock that can dissolve over time, creating underground voids and caves, as noted in a report from The Tennessean.

Jakob Walter, the founder and principal engineer of Haushepherd, shared his thoughts on these challenges. “Limestone is generally a stable sedimentary bedrock material with strength parameters that are favorable for tunneling. Limestone is however fairly soluble when compared to other rack materials, and can dissolve over long periods of time when exposed to water. 

“Unexpected encounters with these features while tunneling can result in significant construction delays and potential instability of the excavation. In urban locations, structures at the ground surface should also be constantly monitored with robotic total stations or similar surveying equipment to identify any early signs of movement or distress,” he said.

Continue Reading

Trending