Connect with us

News

SpaceX installs Raptor Vacuum engine on first orbital-class Starship

Starship S20's third round of Raptor Vacuum engine installation - hopefully for good. (NASASpaceflight - Nic Ansuini)

Published

on

Update: Providing the best views yet of the Raptor Vacuum installation process, SpaceX began installing one of Starship S20’s six engines (one of at least two recently trucked to the launch site) on Monday morning.

It remains to be seen exactly how many engines will be installed on Ship 20 or how many will be ignited during its first static fire test but barring the delivery of more Raptors, signs currently point to an initial test of two engines – one sea-level-optimized Raptor Center (RC) and one Raptor Vacuum with a much larger nozzle. Whenever Ship 20 does fire up those engines, it will be the first static fire of a RVac engine installed on a Starship and the first simultaneous, side-by-side static fire of two different Raptor variants. Since publishing time, SpaceX has cancelled a Tuesday road closure, pushing Starship S20’s first static fire attempt to no earlier than (NET) Wednesday evening.

For the third time in two months, SpaceX has begun installing Raptor engines on its first orbital-class Starship prototype – hopefully for good.

In no uncertain terms, Starship 20’s (S20) path to what could be its last Raptor installations has been about as windy and mysterious as they come. Starship 20 (S20) left the Starbase factory floor for the first time in early August – all six Raptors installed in another program first – for a brief fit check and photo op. After spending about an hour installed on top of Super Heavy Booster 4 (B4), Ship 20 was removed and returned to the build site, where teams removed all six engines and finished wiring and plumbing the vehicle.

Days before the ship’s long-anticipated trip to Starbase’s suborbital launch site for qualification testing, the mount SpaceX prepared for the process quickly had hydraulic rams – used to safely simulate Raptor thrust – were abruptly removed. Starship S20 was then installed on the Pad B mount, where SpaceX proceeded to reinstall six Raptors. Weeks later, after slow heat shield repairs neared completion, SpaceX again removed Ship 20’s Raptors and reinstalled the hydraulic rams it had removed – unused – the month prior. Finally, on September 30th, some seven weeks after the prototype arrived at the suborbital launch site, SpaceX put Starship S20 through its first major test – a lengthy ‘cryoproof’.

Advertisement
-->

Now, ten days after completing a seemingly flawless cryoproof test on its first try, SpaceX has once again trucked multiple Raptors – at least one sea level and one vacuum engine – from the Starbase build site to Starship S20’s suborbital test stand. From the outside looking in, it’s hard not to view the contradictory path S20 took to its first tests – and is still taking to its first static fire(s) – as an unusually visible sign of some kind of internal tug of war or major communication failure between different SpaceX groups or executives.

It’s impossible to determine anything specific beyond the apparent fact that several of the steps taken from Ship 20’s first factory departure to its first cryoproof and static fire tests could have probably been deleted entirely with no harm done and many dozens of hours of work saved. At the end of the day, Starship S20 completed cryoproof testing without issue on the first try and is now seemingly on track to begin its first static fire test campaign later this month.

At the moment, SpaceX has three possible static fire test windows scheduled from 5pm to midnight CDT on Tuesday, Wednesday, and Thursday (Oct 12-14). A similar Monday window was canceled days ago on October 7th, suggesting that more cancellations are probably on the horizon. For now, there’s a chance that Starship S20 – with anywhere from two to all six Raptor engines installed – will fire up for the first time before next weekend. It’s hard to say how exactly SpaceX will proceed. It’s not inconceivable that SpaceX will install all six engines and gradually ramp up to a full six-engine static fire over several tests.

Raptor Vacuum has identical plumbing but a far larger nozzle than its sea-level-optimized siblings. A larger nozzle boosts engine efficiency in or near vacuum.

Given that SpaceX has already static fired three Raptor Center (RC) engines on multiple Starship and Super Heavy prototypes, odds are good that Starship S20’s test campaign will be similar – beginning with a three-Raptor static fire, in other words. SpaceX could then add one, two, or all three Raptor Vacuum engines into the fray for one or more additional tests with 4-6 engines total. It’s also possible that suborbital launch mount and pad limitations will prevent more than three engines from firing at once, in which case SpaceX would presumably perform two separate tests of Ship 20’s Raptor Center and Raptor Vacuum engines.

Given that two Raptor variants have never been static fired simultaneously on the same vehicle, it’s hard to imagine that SpaceX won’t also want to perform one or several combined static fires with Raptor Vacuum and Raptor Center engines on Ship 20.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla’s northernmost Supercharger in North America opens

Published

on

Credit: Tesla

Tesla has opened its northernmost Supercharger in Fairbanks, Alaska, with eight V4 stalls located in one of the most frigid cities in the U.S.

Located just 196 miles from the Arctic Circle, Fairbanks’s average temperature for the week was around -12 degrees Fahrenheit. However, there are plenty of Tesla owners in Alaska who have been waiting for more charging options out in public.

There are only 36 total Supercharger stalls in Alaska, despite being the largest state in the U.S.

Eight Superchargers were added to Fairbanks, which will eventually be a 48-stall station. Tesla announced its activation today:

The base price per kWh is $0.43 at the Fairbanks Supercharger. Thanks to its V4 capabilities, it can charge at speeds up to 325 kW.

Despite being the northernmost Supercharger in North America, it is not even in the Top 5 northernmost Superchargers globally, because Alaska is south of Norway. The northernmost Supercharger is in Honningsvåg, Norway. All of the Top 5 are in the Scandanavian country.

Tesla’s Supercharger expansion in 2025 has been impressive, and although it experienced some early-quarter slowdowns due to V3-to-V4 hardware transitions, it has been the company’s strongest year for deployments.

Through the three quarters of 2025, the company has added 7,753 stations and 73,817 stalls across the world, a 16 percent increase in stations and an 18 percent increase in stalls compared to last year.

Tesla is on track to add over 12,000 stalls for the full year, achieving an average of one new stall every hour, an impressive statistic.

Recently, the company wrapped up construction at its Supercharger Oasis in Lost Hills, California, a 168-stall Supercharger that Tesla Solar Panels completely power. It is the largest Supercharger in the world.

Continue Reading

News

Tesla hints toward Premium Robotaxi offering with Model S testing

Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”

Published

on

Credit: Sawyer Merritt | X

Tesla Model S vehicles were spotted performing validation testing with LiDAR rigs in California today, a pretty big switch-up compared to what we are used to seeing on the roads.

Tesla utilizes the Model Y crossover for its Robotaxi fleet. It is adequately sized, the most popular vehicle in its lineup, and is suitable for a wide variety of applications. It provides enough luxury for a single rider, but enough room for several passengers, if needed.

However, the testing has seemingly expanded to one of Tesla’s premium flagship offerings, as the Model S was spotted with the validation equipment that is seen entirely with Model Y vehicles. We have written several articles on Robotaxi testing mules being spotted across the United States, but this is a first:

Why Tesla has chosen to use a couple of Model S units must have a reason; the company is calculated in its engineering and data collection efforts, so this is definitely more than “we just felt like giving our drivers a change of scenery.”

It seems to hint that Tesla could add a premium, more luxury offering to its Robotaxi platform eventually. Think about it: Uber has Uber Black, Lyft has Lyft Black. These vehicles and services are associated with a more premium cost as they combine luxury models with more catered transportation options.

Tesla could be testing the waters here, and it could be thinking of adding the Model S to its fleet of ride-hailing vehicles.

Reluctant to remove the Model S from its production plans completely despite its low volume contributions to the overall mission of transitioning the world to sustainable energy, the flagship sedan has always meant something. CEO Elon Musk referred to it, along with its sibling Model X, as continuing on production lines due to “sentimental reasons.”

However, its purpose might have been expanded to justify keeping it around, and why not? It is a cozy, premium offering, and it would be great for those who want a little more luxury and are willing to pay a few extra dollars.

Of course, none of this is even close to confirmed. However, it is reasonable to speculate that the Model S could be a potential addition to the Robotaxi fleet. It’s capable of all the same things the Model Y is, but with more luxuriousness, and it could be the perfect addition to the futuristic fleet.

Continue Reading

News

Rivian unveils self-driving chip and autonomy plans to compete with Tesla

Rivian, a mainstay in the world of electric vehicle startups, said it plans to roll out an Autonomy+ subscription and one-time purchase program, priced at $49.99 per month and $2,500 up front, respectively, for access to its self-driving suite.

Published

on

Credit: Rivian

Rivian unveiled its self-driving chip and autonomy plans to compete with Tesla and others at its AI and Autonomy Day on Thursday in Palo Alto, California.

Rivian, a mainstay in the world of electric vehicle startups, said it plans to roll out an Autonomy+ subscription and one-time purchase program, priced at $49.99 per month and $2,500 up front, respectively, for access to its self-driving suite.

CEO RJ Scaringe said it will learn and become more confident and robust as more miles are driven and it gathers more data. This is what Tesla uses through a neural network, as it uses deep learning to improve with every mile traveled.

He said:

“I couldn’t be more excited for the work our teams are driving in autonomy and AI. Our updated hardware platform, which includes our in-house 1600 sparse TOPS inference chip, will enable us to achieve dramatic progress in self-driving to ultimately deliver on our goal of delivering L4. This represents an inflection point for the ownership experience – ultimately being able to give customers their time back when in the car.”

At first, Rivian plans to offer the service to personally-owned vehicles, and not operate as a ride-hailing service. However, ride-sharing is in the plans for the future, he said:

“While our initial focus will be on personally owned vehicles, which today represent a vast majority of the miles to the United States, this also enables us to pursue opportunities in the rideshare space.”

The Hardware

Rivian is not using a vision-only approach as Tesla does, and instead will rely on 11 cameras, five radar sensors, and a single LiDAR that will face forward.

It is also developing a chip in-house, which will be manufactured by TSMC, a supplier of Tesla’s as well. The chip will be known as RAP1 and will be about 50 times as powerful as the chip that is currently in Rivian vehicles. It will also do more than 800 trillion calculations every second.

RAP1 powers the Autonomy Compute Module 3, known as ACM3, which is Rivian’s third-generation autonomy computer.

ACM3 specs include:

  • 1600 sparse INT8 TOPS (Trillion Operations Per Second).
  • The processing power of 5 billion pixels per second.
  • RAP1 features RivLink, a low-latency interconnect technology allowing chips to be connected to multiply processing power, making it inherently extensible.
  • RAP1 is enabled by an in-house developed AI compiler and platform software

As far as LiDAR, Rivian plans to use it in forthcoming R2 cars to enable SAE Level 4 automated driving, which would allow people to sit in the back and, according to the agency’s ratings, “will not require you to take over driving.”

More Details

Rivian said it will also roll out advancements to the second-generation R1 vehicles in the near term with the addition of UHF, or Universal Hands-Free, which will be available on over 3.5 million miles of roadway in the U.S. and Canada.

Rivian will now join the competitive ranks with Tesla, Waymo, Zoox, and others, who are all in the race for autonomy.

Continue Reading