Connect with us

News

SpaceX’s first orbital-class Super Heavy booster rejoins Starship at the launch pad

Super Heavy Booster 4 rolls to Starbase's orbital launch pad for the second time. (Starship Gazer)

Published

on

For the second time in five weeks, SpaceX has rolled Starship’s first orbital-class Super Heavy booster from its Starbase factory to the launch pad ahead of a challenging and multifaceted test campaign.

Deemed Super Heavy Booster 4 or B4, the 69m (~225 ft) tall rocket first rolled to the launch pad around August 3rd after SpaceX technicians fitted it with 29 Raptor engines in a single night. Followed by orbital-class Starship prototype S20 a few days later, the two stages of a Starship were stacked to their full height on August 6th, briefly creating the largest rocket ever assembled. Ship 20 was then quickly returned to the build site, where SpaceX workers completed an additional ~10 days of finishing touches – mainly focused on avionics wiring and secondary plumbing.

A week later, Booster 4 followed Ship 20 back to Starbase’s ‘high bay,’ where teams ultimately removed all 29 of its Raptor engines and spent the next four or so weeks performing similar final integration work. Now, after installing what looks like hundreds of feet of wiring, dozens of additional gas and fluid lines, compressed gas tanks, hydraulic ‘sleds’ SpaceX’s first flightworthy Super Heavy has once again returned to the launch site

A bit less than two weeks ago, SpaceX once again installed 29 Raptors on Booster 4. This time around, though, all of those engines are believed to be ready for flight – or, at minimum, static fire testing – after completing qualification testing at SpaceX’s Central Texas development facilities. Intriguingly, every one of Super Heavy’s outer ring of 20 ‘Raptor Boost’ engines is also expected to have its own small umbilical panel that will connect to the orbital launch pad’s ground systems.

When Booster 4 was installed on the brand new orbital launch mount, most of those individual engine connectors had yet to be installed and it’s unclear if SpaceX was actually able to test the complex mechanisms before Super Heavy returned to the build site. This time, all 20 engine umbilical actuators have been installed on the launch mount and it’s safe to assume that those mechanisms will be tested extensively in the coming weeks.

Advertisement
-->
These are actually believed to be individual Raptor Boost umbilical connectors.

That testing will be part of a much more involved test campaign. Namely, if SpaceX intends to test Super Heavy Booster 4 at the orbital launch site, any booster testing will simultaneously require the shakedown of the orbital pad’s extensive, custom-built tank farm and a wide range of other ground infrastructure that simply didn’t exist at the start of 2021. Booster 4 qualification is no less daunting, as no Super Heavy has ever been fully tested. Now in the midst of being scrapped in place at SpaceX’s suborbital test facilities, Super Heavy Booster 3 did complete a partial cryogenic proof test and a static fire with three Raptor engines, but SpaceX has never fully filled a Super Heavy with >3000 tons (~6.6M lb) of propellant and never static fired more than three Raptor engines simultaneously.

Super Heavy Booster 4 during its first installation on the orbital launch mount.

Perhaps the most uncertain part of Super Heavy Booster 4 qualification is its static fire test campaign. However SpaceX gets there, the final challenge will likely be igniting all 29 of B4’s Raptor engines – potentially producing up to ~5400 tons (11.9M lbf) of thrust, thus making Super Heavy the most powerful rocket booster ever tested.

Simultaneously, SpaceX also began reinstalling Raptors on Ship 20 – currently installed at Suborbital Pad B – ahead of the Starship’s first proof test(s) and static fire(s). Stay tuned for updates on SpaceX’s plans for testing the first orbital-class Starship and Super Heavy booster.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla AI5 chip nears completion, Elon Musk teases 9-month development cadence

The Tesla CEO shared his recent insights in a post on social media platform X.

Published

on

Credit: Tesla

Tesla’s next-generation AI5 chip is nearly complete, and work on its successor is already underway, as per a recent update from Elon Musk. 

The Tesla CEO shared his recent insights in a post on social media platform X.

Musk details AI chip roadmap

In his post, Elon Musk stated that Tesla’s AI5 chip design is “almost done,” while AI6 has already entered early development. Musk added that Tesla plans to continue iterating rapidly, with AI7, AI8, AI9, and future generations targeting a nine-month design cycle. 

He also noted that Tesla’s in-house chips could become the highest-volume AI processors in the world. Musk framed his update as a recruiting message, encouraging engineers to join Tesla’s AI and chip development teams.

Tesla community member Herbert Ong highlighted the strategic importance of the timeline, noting that faster chip cycles enable quicker learning, faster iteration, and a compounding advantage in AI and autonomy that becomes increasingly difficult for competitors to close.

Advertisement
-->

AI5 manufacturing takes shape

Musk’s comments align with earlier reporting on AI5’s production plans. In December, it was reported that Samsung is preparing to manufacture Tesla’s AI5 chip, accelerating hiring for experienced engineers to support U.S. production and address complex foundry challenges.

Samsung is one of two suppliers selected for AI5, alongside TSMC. The companies are expected to produce different versions of the AI5 chip, with TSMC reportedly using a 3nm process and Samsung using a 2nm process.

Musk has previously stated that while different foundries translate chip designs into physical silicon in different ways, the goal is for both versions of the Tesla AI5 chip to operate identically. AI5 will succeed Tesla’s current AI4 hardware, formerly known as Hardware 4, and is expected to support the company’s Full Self-Driving system as well as other AI-driven efforts, including Optimus.

Continue Reading

News

Tesla Model Y and Model 3 named safest vehicles tested by ANCAP in 2025

According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025.

Published

on

Credit: ANCAP

The Tesla Model Y recorded the highest overall safety score of any vehicle tested by ANCAP in 2025. The Tesla Model 3 also delivered strong results, reinforcing the automaker’s safety leadership in Australia and New Zealand.

According to ANCAP in a press release, the Tesla Model Y achieved the highest overall weighted score of any vehicle assessed in 2025. ANCAP’s 2025 tests evaluated vehicles across four key pillars: Adult Occupant Protection, Child Occupant Protection, Vulnerable Road User Protection, and Safety Assist technologies.

The Model Y posted consistently strong results in all four categories, distinguishing itself through a system-based safety approach that combines structural crash protection with advanced driver-assistance features such as autonomous emergency braking, lane support, and driver monitoring. 

This marked the second time the Model Y has topped ANCAP’s annual safety rankings. The Model Y’s previous version was also ANCAP’s top performer in 2022.

The Tesla Model 3 also delivered a strong performance in ANCAP’s 2025 tests, contributing to Tesla’s broader safety presence across segments. Similar to the Model Y, the Model 3 also earned impressive scores across the ANCAP’s four pillars. This made the vehicle the top performer in the Medium Car category.  

ANCAP Chief Executive Officer Carla Hoorweg stated that the results highlight a growing industry shift toward integrated safety design, with improvements in technologies such as autonomous emergency braking and lane support translating into meaningful real-world protection.

Advertisement
-->

“ANCAP’s testing continues to reinforce a clear message: the safest vehicles are those designed with safety as a system, not a checklist. The top performers this year delivered consistent results across physical crash protection, crash avoidance and vulnerable road user safety, rather than relying on strength in a single area.

“We are also seeing increasing alignment between ANCAP’s test requirements and the safety technologies that genuinely matter on Australian and New Zealand roads. Improvements in autonomous emergency braking, lane support, and driver monitoring systems are translating into more robust protection,” Hoorweg said.

Continue Reading

News

Tesla Sweden uses Megapack battery to bypass unions’ Supercharger blockade

Just before Christmas, Tesla went live with a new charging station in Arlandastad, outside Stockholm, by powering it with a Tesla Megapack battery.

Published

on

Credit: Tesla Charging/X

Tesla Sweden has successfully launched a new Supercharger station despite an ongoing blockade by Swedish unions, using on-site Megapack batteries instead of traditional grid connections. The workaround has allowed the Supercharger to operate without direct access to Sweden’s electricity network, which has been effectively frozen by labor action.

Tesla has experienced notable challenges connecting its new charging stations to Sweden’s power grid due to industrial action led by Seko, a major Swedish trade union, which has blocked all new electrical connections for new Superchargers. On paper, this made the opening of new Supercharger sites almost impossible.

Despite the blockade, Tesla has continued to bring stations online. In Malmö and Södertälje, new Supercharger locations opened after grid operators E.ON and Telge Nät activated the sites. The operators later stated that the connections had been made in error. 

More recently, however, Tesla adopted a different strategy altogether. Just before Christmas, Tesla went live with a new charging station in Arlandastad, outside Stockholm, by powering it with a Tesla Megapack battery, as noted in a Dagens Arbete (DA) report. 

Because the Supercharger station does not rely on a permanent grid connection, Tesla was able to bypass the blocked application process, as noted by Swedish car journalist and YouTuber Peter Esse. He noted that the Arlandastad Supercharger is likely dependent on nearby companies to recharge the batteries, likely through private arrangements.

Advertisement
-->

Eight new charging stalls have been launched in the Arlandastad site so far, which is a fraction of the originally planned 40 chargers for the location. Still, the fact that Tesla Sweden was able to work around the unions’ efforts once more is impressive, especially since Superchargers are used even by non-Tesla EVs.

Esse noted that Tesla’s Megapack workaround is not as easily replicated in other locations. Arlandastad is unique because neighboring operators already have access to grid power, making it possible for Tesla to source electricity indirectly. Still, Esse noted that the unions’ blockades have not affected sales as much.

“Many want Tesla to lose sales due to the union blockades. But you have to remember that sales are falling from 2024, when Tesla sold a record number of cars in Sweden. That year, the unions also had blockades against Tesla. So for Tesla as a charging operator, it is devastating. But for Tesla as a car company, it does not matter in terms of sales volumes. People charge their cars where there is an opportunity, usually at home,” Esse noted. 

Advertisement
-->
Continue Reading