Connect with us

News

SpaceX reusability may soon be in good company as Rocket Lab catches rocket with a helicopter

A screenshot of Rocket Lab's recet "mid-air recovery" test shows a helicopter outfitted with a specialized grappling hook snagging an Electron booster test article.

Published

on

Rocket Lab, the world’s most prominent dedicated small satellite launcher, has made significant headway on plans to recover and reuse the booster stage of its Electron rocket, meaning that SpaceX’s reusable Falcon rockets could finally have company.

Recovering a booster is perhaps where all similarities end, however. While the SpaceX Falcon 9 gracefully guides itself back for a controlled landing on an ocean-going drone ship or land-based landing zone, Rocket Lab’s Electron booster will be snagged straight out of the air by a helicopter with a grappling hook.

A screenshot of Rocket Lab’s recet “mid-air recovery” test shows a helicopter outfitted with a specialized grappling hook snagging an Electron booster test article.

Recently, Rocket Lab completed what the company called “a major step forward” in plans to achieve full booster recoverability with the successful completion of a “mid-air recovery” test. The test occurred over the open ocean near New Zealand and featured what was identified as an “Electron first stage test article.” One helicopter released the test article at a low altitude – around 2.5km (8,000ft) – and a nearby second helicopter, outfitted with a specially designed grappling hook, swooped in and snatched it out of the sky as it plummeted toward the ocean.

Rocket Lab’s recovery efforts did not simply begin with dropping a rocket-shaped test article from a helicopter. Long before ever attempting to catch a test article falling through the sky, the company had to ensure that the first stage of the Electron booster could even survive the return trip. Rocket Lab CEO and founder, Peter Beck, referred to it as punching through the wall which best summarizes the conditions that the first stage encounters upon re-entry through on the Earth’s dense atmosphere.

Rocket Lab’s groundbreaking Electron rocket is being upgraded for reusability and its next launch is set to debut some new hardware. (Rocket Lab)

The company’s tenth successful launch dubbed “Running Out of Fingers” in December of 2019 was not only successful because it delivered and deployed the payload, but it was also the first time that Electron’s first stage first made it safely through the wall intact. Unlike SpaceX’s Falcon 9 that slows during descent with a series of engine burns, Rocket Lab’s Electron orients itself for the right “angle of attack” to slow down during re-entry.

The first stage of Electron has undergone a number of block upgrades to enable re-entry in one piece. The tenth mission featured the use of the upgraded Electron booster equipped with guidance and navigation hardware, as well as, a reaction control system (RCS) to gently control and reorient the first-stage during re-entry. The RCS was able to keep the booster adequately oriented and slowed it to under 900 kilometers per hour (560mph) for a controlled sea-level impact. The following eleventh mission dubbed “Birds of a Feather” in February 2020, also featured a successful controlled descent of the upgraded Electron first stage.

The final step in slowing the Electron down enough to be recovered by a grappling hook suspended by a helicopter was to develop and test a parachute system. Beck posted a teaser of the prototype parachute on Twitter in early February promising low altitude drop tests to follow soon after. Rocket Lab stated that the successful “mid-air recovery” test occurred weeks prior to the now mandated “Safer at Home” orders given in New Zealand amid the global COVID-19 pandemic.

As reported by Michael Sheetz of CNBC, Rocket Lab will continue to test recovery efforts on an undisclosed mission scheduled for later this year. That test will exercise Electron’s RCS block upgrades and parachute system to a greater extent to slow the booster to a point of survivability upon impact with the water – a speed of about 8kilometers per hour (5mph).

Like SpaceX, Rocket Lab targets a reduction of launch costs and an increase in launch capabilities with full first-stage reusability. The dedicated launcher of small satellites also strives to further open access to space for the rapidly expanding small satellite market.

Currently, Rocket Lab has two operational launch pads, one on New Zealand’s Mahia Penninsula and another at the Mid-Atlantic Regional Spaceport at NASA’s Wallops Flight Facility in Virginia. Later this year a second location on New Zealand’s Mahia Penninsula will come online drastically increasing Rocket Lab’s launching capabilities.

Check out Teslarati’s newsletters for prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket launch and recovery processes.

Advertisement

Space Reporter.

Advertisement
Comments

News

Tesla confirms that it finally solved its 4680 battery’s dry cathode process

The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Published

on

tesla 4680
Image used with permission for Teslarati. (Credit: Tom Cross)

Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years. 

The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Dry cathode 4680 cells

In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.

The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”

Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.

4680 packs for Model Y

Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla: 

“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”

The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.

Continue Reading

Elon Musk

Tesla Giga Texas to feature massive Optimus V4 production line

This suggests that while the first Optimus line will be set up in the Fremont Factory, the real ramp of Optimus’ production will happen in Giga Texas.

Published

on

Credit: Tesla/YouTube

Tesla will build Optimus 4 in Giga Texas, and its production line will be massive. This was, at least, as per recent comments by CEO Elon Musk on social media platform X.  

Optimus 4 production

In response to a post on X which expressed surprise that Optimus will be produced in California, Musk stated that “Optimus 4 will be built in Texas at much higher volume.” This suggests that while the first Optimus line will be set up in the Fremont Factory, and while the line itself will be capable of producing 1 million humanoid robots per year, the real ramp of Optimus’ production will happen in Giga Texas. 

This was not the first time that Elon Musk shared his plans for Optimus’ production at Gigafactory Texas. During the 2025 Annual Shareholder Meeting, he stated that Giga Texas’ Optimus line will produce 10 million units of the humanoid robot per year. He did not, however, state at the time that Giga Texas would produce Optimus V4. 

“So we’re going to launch on the fastest production ramp of any product of any large complex manufactured product ever, starting with building a one-million-unit production line in Fremont. And that’s Line one. And then a ten million unit per year production line here,” Musk stated. 

How big Optimus could become

During Tesla’s Q4 and FY 2025 earnings call, Musk offered additional context on the potential of Optimus. While he stated that the ramp of Optimus’ production will be deliberate at first, the humanoid robot itself will have the potential to change the world. 

“Optimus really will be a general-purpose robot that can learn by observing human behavior. You can demonstrate a task or verbally describe a task or show it a task. Even show it a video, it will be able to do that task. It’s going to be a very capable robot. I think long-term Optimus will have a very significant impact on the US GDP. 

“It will actually move the needle on US GDP significantly. In conclusion, there are still many who doubt our ambitions for creating amazing abundance. We are confident it can be done, and we are making the right moves technologically to ensure that it does. Tesla, Inc. has never been a company to shy away from solving the hardest problems,” Musk stated. 

Continue Reading

Elon Musk

Rumored SpaceX-xAI merger gets apparent confirmation from Elon Musk

The comment follows reports that the rocket maker is weighing a transaction that could further consolidate Musk’s space and AI ventures.

Published

on

Credit: xAI

Elon Musk appeared to confirm reports that SpaceX is exploring a potential merger with artificial intelligence startup xAI by responding positively to a post about the reported transaction on X.

Musk’s comment follows reports that the rocket maker is weighing a transaction that could further consolidate his space and AI ventures.

SpaceX xAI merger

As per a recent Reuters report, SpaceX has held discussions about merging with xAI, with the proposed structure potentially involving an exchange of xAI shares for SpaceX stock. The value, structure, and timing of any deal have not been finalized, and no agreement has been signed.

Musk appeared to acknowledge the report in a brief reply on X, responding “Yeah” to a post that described SpaceX as a future “Dyson Swarm company.” The comment references a Dyson Swarm, a sci-fi megastructure concept that consists of a massive network of satellites or structures that orbit a celestial body to harness its energy. 

Reuters noted that two entities were formed in Nevada on January 21 to facilitate a potential transaction for the possible SpaceX-xAI merger. The discussions remain ongoing, and a transaction is not yet guaranteed, however.

AI and space infrastructure

A potential merger with xAI would align with Musk’s stated strategy of integrating artificial intelligence development with space-based systems. Musk has previously said that space-based infrastructure could support large-scale computing by leveraging continuous solar energy, an approach he has framed as economically scalable over time.

xAI already has operational ties to Musk’s other companies. The startup develops Grok, a large language model that holds a U.S. Department of Defense contract valued at up to $200 million. AI also plays a central role in SpaceX’s Starlink and Starshield satellite programs, which rely on automation and machine learning for network management and national security applications.

Musk has previously consolidated his businesses through share-based transactions, including Tesla’s acquisition of SolarCity in 2016 and xAI’s acquisition of X last year. Bloomberg has also claimed that Musk is considering a merger between SpaceX and Tesla in the future. 

Continue Reading