Connect with us

News

SpaceX reusability may soon be in good company as Rocket Lab catches rocket with a helicopter

A screenshot of Rocket Lab's recet "mid-air recovery" test shows a helicopter outfitted with a specialized grappling hook snagging an Electron booster test article.

Published

on

Rocket Lab, the world’s most prominent dedicated small satellite launcher, has made significant headway on plans to recover and reuse the booster stage of its Electron rocket, meaning that SpaceX’s reusable Falcon rockets could finally have company.

Recovering a booster is perhaps where all similarities end, however. While the SpaceX Falcon 9 gracefully guides itself back for a controlled landing on an ocean-going drone ship or land-based landing zone, Rocket Lab’s Electron booster will be snagged straight out of the air by a helicopter with a grappling hook.

A screenshot of Rocket Lab’s recet “mid-air recovery” test shows a helicopter outfitted with a specialized grappling hook snagging an Electron booster test article.

Recently, Rocket Lab completed what the company called “a major step forward” in plans to achieve full booster recoverability with the successful completion of a “mid-air recovery” test. The test occurred over the open ocean near New Zealand and featured what was identified as an “Electron first stage test article.” One helicopter released the test article at a low altitude – around 2.5km (8,000ft) – and a nearby second helicopter, outfitted with a specially designed grappling hook, swooped in and snatched it out of the sky as it plummeted toward the ocean.

Rocket Lab’s recovery efforts did not simply begin with dropping a rocket-shaped test article from a helicopter. Long before ever attempting to catch a test article falling through the sky, the company had to ensure that the first stage of the Electron booster could even survive the return trip. Rocket Lab CEO and founder, Peter Beck, referred to it as punching through the wall which best summarizes the conditions that the first stage encounters upon re-entry through on the Earth’s dense atmosphere.

Rocket Lab’s groundbreaking Electron rocket is being upgraded for reusability and its next launch is set to debut some new hardware. (Rocket Lab)

The company’s tenth successful launch dubbed “Running Out of Fingers” in December of 2019 was not only successful because it delivered and deployed the payload, but it was also the first time that Electron’s first stage first made it safely through the wall intact. Unlike SpaceX’s Falcon 9 that slows during descent with a series of engine burns, Rocket Lab’s Electron orients itself for the right “angle of attack” to slow down during re-entry.

The first stage of Electron has undergone a number of block upgrades to enable re-entry in one piece. The tenth mission featured the use of the upgraded Electron booster equipped with guidance and navigation hardware, as well as, a reaction control system (RCS) to gently control and reorient the first-stage during re-entry. The RCS was able to keep the booster adequately oriented and slowed it to under 900 kilometers per hour (560mph) for a controlled sea-level impact. The following eleventh mission dubbed “Birds of a Feather” in February 2020, also featured a successful controlled descent of the upgraded Electron first stage.

The final step in slowing the Electron down enough to be recovered by a grappling hook suspended by a helicopter was to develop and test a parachute system. Beck posted a teaser of the prototype parachute on Twitter in early February promising low altitude drop tests to follow soon after. Rocket Lab stated that the successful “mid-air recovery” test occurred weeks prior to the now mandated “Safer at Home” orders given in New Zealand amid the global COVID-19 pandemic.

Advertisement

As reported by Michael Sheetz of CNBC, Rocket Lab will continue to test recovery efforts on an undisclosed mission scheduled for later this year. That test will exercise Electron’s RCS block upgrades and parachute system to a greater extent to slow the booster to a point of survivability upon impact with the water – a speed of about 8kilometers per hour (5mph).

Like SpaceX, Rocket Lab targets a reduction of launch costs and an increase in launch capabilities with full first-stage reusability. The dedicated launcher of small satellites also strives to further open access to space for the rapidly expanding small satellite market.

Currently, Rocket Lab has two operational launch pads, one on New Zealand’s Mahia Penninsula and another at the Mid-Atlantic Regional Spaceport at NASA’s Wallops Flight Facility in Virginia. Later this year a second location on New Zealand’s Mahia Penninsula will come online drastically increasing Rocket Lab’s launching capabilities.

Check out Teslarati’s newsletters for prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket launch and recovery processes.

Advertisement
Advertisement
Comments

Elon Musk

Jim Cramer chimes in on Tesla CEO Elon Musk’s pay package

“Don’t be small-minded: Tesla is about robots, Full Self-Driving, the future. Give him his package.”

Published

on

Credit: The Street

Investor and host of Mad Money on MSNBC , Jim Cramer, has chimed in on Tesla CEO Elon Musk’s pay package and whether it should be rewarded to the frontman or not.

Cramer has drawn a lot of attention regarding his sentiments on Tesla, as investors have routinely given him a pretty hard time over what he’s said about the company.

For the past few years, we have covered his comments on Tesla when he has something to say, mostly because his opinion on the stock seems to change pretty frequently; at a minimum, he has something different to say about it every few months.

However, Cramer knows Musk’s value to Tesla, and said on Thursday that he believes the CEO deserves his pay package:

“Don’t be small-minded: Tesla is about robots, Full Self-Driving, the future. Give him his package.”

Cramer’s comments come just one day after Tesla’s Q3 2025 Earnings Call, where Musk took several opportunities to call out the importance of the pay package and how it could impact the company’s future — with or without him.

Musk said at one point that he would not feel comfortable continuing to develop the company’s massive fleet of Optimus bots without having appropriate control of the company from a voting perspective.

He said he does not want so much power that if he “were to lose his mind,” he could not be removed. However, he does feel he needs to be protected from “activist shareholders,” or “corporate terrorists” like proxy groups Institutional Shareholder Services (ISS) and Glass Lewis:

“My fundamental concern with regard to how much voting control I have at Tesla is if I go ahead and build this enormous robot army, can I just be ousted at some point in the future? …It’s just, if we build this robot army, do I have at least a strong influence over that robot army, not current control, but a strong influence? That’s what it comes down to in a nutshell. I don’t feel comfortable wielding that robot army if I don’t have at least a strong influence.”

At the end of the call, Musk said:

“Like I said, I just don’t feel comfortable building a robot army here and then being ousted because of some asinine recommendations from ISS and Glass Lewis, who have no freaking clue. I mean, those guys are corporate terrorists.”

Cramer is one of many who realize Musk’s importance to Tesla, and how the company would likely lack the guidance and prowess it does without his planning and drive. However, Tesla shareholders will have the ultimate say on November 6 when they vote on Musk’s compensation plan.

Continue Reading

Elon Musk

Tesla is stumped on how to engineer this Optimus part, but they’re close

Published

on

Credit: Tesla

Tesla has been stumped on how to engineer one crucial part of the Optimus bot, but CEO Elon Musk says the company is “on the cusp” of achieving something great with the project.

During the Q3 2025 Earnings Call, Tesla CEO Elon Musk revealed the company is moving closer to a major breakthrough with the Optimus project, and said they are “on the cusp of something really tremendous.”

However, it seems there is one specific portion of the robot that has truly stumped engineers at the company: the hand, fingers, and forearm.

Musk went into great detail about how incredibly complex and amazing the human hand is, highlighting its dexterity and capability, as its ability to perform a wide variety of tasks is especially impressive:

“I don’t want to downplay the difficulty, but it’s an incredibly difficult thing, especially to create a hand that is as dexterous and capable as the human hand, which is incredible. The human hand is an incredible thing. The more you study the human hand, the more incredible you realize it is, and why you need four fingers and a thumb, why the fingers have certain degrees of freedom, why the various muscles are of different strengths, and fingers are of different lengths. It turns out that those are all there for a reason.”

It’s been pretty apparent that Tesla has made massive strides in the Optimus project, especially considering it has been able to walk down hills, learn things like Kung Fu, and even perform service tasks like serving food and drinks.

However, a recent look at a Gen 2.5 version of Optimus posted by Marc Benioff, the CEO of Salesforce, showed that Tesla was likely using mannequin hands until it developed something that was both useful and aesthetically pleasing:

Musk continued on the call last night that the Tesla team was confronted with an “incredibly difficult” challenge from an engineering perspective, and the hands and actuators for that specific part were tough to figure out:

“Making the hand and forearm, because most of the actuators, just like the human hand, the muscles that control your hand are actually primarily in your forearm. The Optimus hand and forearm is an incredibly difficult engineering challenge. I’d say it’s more difficult than the rest of the robot from an electromechanical standpoint. The forearm and hand are more difficult than the entire rest of the robot. But really, in order to have a useful generalized robot, you do need an incredible hand.”

The CEO continued that developing a useful and effective robot was “crucial to the future of the company,” and that he works with Optimus’s design team each Friday night.

Continue Reading

News

Elon Musk sets definitive Tesla Cybercab production date and puts a rumor to rest

“The single biggest expansion in production will be the Cybercab, which starts production in Q2 next year.” -Elon Musk

Published

on

Credit: Teslarati

Tesla CEO Elon Musk finally set a definitive date for Tesla Cybercab production and, at the same time, put a substantial rumor regarding the vehicle that has been circulating within the community to rest.

Tesla’s Cybercab was unveiled last October as the company’s two-seater, affordable option that would ultimately be the car used for autonomous travel. It was initially slated for production in late 2025 or early 2026.

Tesla is ramping up its hiring for the Cybercab production team

However, Tesla has finally said it will start production of the Cybercab in Q2 2026, a more concrete date for the company, as it has moved the entire project forward in recent weeks by testing it at the Fremont Test Track and conducting crash safety assessments.

Musk said on the Q3 2025 Earnings Call:

“The single biggest expansion in production will be the Cybercab, which starts production in Q2 next year. That’s really a vehicle that’s optimized for full autonomy. It, in fact, does not have a steering wheel or pedals and is really an enduring optimization on minimizing cost per mile for fully considered cost per mile of operation.”

In that quote, Musk also put a rumor that has been circulating within the community to rest. Some started to speculate whether Cybercab would be sold with a steering wheel and pedals, as many of the elements of the car seemed to hint toward not being exclusively autonomous, including side mirrors being equipped, among other things.

It has been interesting to see some consider whether Tesla would sell the vehicle with the elements that would enable human control, especially as there have been a handful of images of the vehicle on company property with a steering wheel spotted.

However, Musk doubled down on the autonomous nature of the Cybercab with this confirmation during the earnings call, something that many investors likely wanted to hear because it was, in a way, a vote of confidence for the company’s path to autonomy.

Continue Reading

Trending