Connect with us

News

SpaceX rocket nosecone catch years in the making caught on camera

One of SpaceX's two fairing catcher ships is pictured after returning to Port Canaveral with its sister ship on July 22nd. (Richard Angle)

Published

on

In a milestone more than three years in the making, SpaceX has successfully caught both halves of a Falcon 9 rocket’s payload fairing (i.e. nosecone) and shared videos of the historic feat.

Meanwhile, twin ships GO Ms. Tree and GO Ms. Chief returned to Port Canaveral before dawn on July 22nd with their trophies safely in hand. After years of development, at least a dozen failed catch attempts, numerous soft ocean landings, and the introduction of a second identical recovery ship, SpaceX has finally proven that a full rocket fairing can be recovered for (relatively) easy reuse.

Ironically, just eight months ago, SpaceX reused an orbital-class payload fairing for the first time, proving that fairings can be recovered and reused even if they fail to land in a recovery ship’s net. As such, the milestone is slightly less monumental than it otherwise could have been – but that’s not a bad thing, in this case. Most importantly, the successful catch of both halves of a Falcon fairing serves as a reminder of SpaceX’s extraordinary tenacity in the face of repeated failures and the reality that – given enough time and resources – the company almost invariably achieves its goals.

Ms. Tree and Ms. Chief returned to port on July 22nd after an unprecedented double fairing catch. (Richard Angle)

In the scope of orbital-class rocket recovery and reusability, payload fairings – nosecones that protect payloads from the atmosphere and environment and deploy several minutes after launch – rarely register. Relative to launch vehicle stages, the fairing typically represents a small fraction of the overall rocket’s cost. However, when built almost entirely out of carbon fiber composites to save as much weight as possible, they can require an outsized amount of labor and production time. At the same time, for a company like SpaceX that has already effectively solved the problem of routine booster recovery and reuse, a part that may have once represented a small fraction of launch costs can quickly become a major portion.

For Falcon 9, with the booster representing something like 65% of the rocket’s material cost, the payload fairing’s share of overall launch cost with a reused booster can quickly balloon from 10% to ~30%. Of course, those savings really only register from an internal perspective, which is precisely way SpaceX has continued to invest in fairing reuse after years with minimal success. Cutting ~30% off the material cost of the dozens to hundreds of Starlink launches planned over the next several years could easily save SpaceX hundreds of millions of dollars.

The lucky Falcon 9 fairing in question. (Richard Angle)
(Richard Angle)
(Richard Angle)

As such, SpaceX continues to reap the benefits of a healthy, industry-leading commercial launch business, more or less allowing it to pay for the production of rockets and facilities by launching a few commercial missions before moving on to many, many more Starlink launches. Up to now, only Falcon boosters have been able to take advantage of that unique opportunity, but SpaceX has very recently begun to reuse payload fairings – also frequently debuting on commercial missions. As of July 23rd, SpaceX has reused Falcon 9 and Falcon Heavy fairings three times, all on Starlink satellite launches.

On July 20th, Falcon 9 booster B1058 lifted off for the second time after a record-breaking turnaround, carrying South Korea’s ANASIS II military communications satellite and a fresh payload fairing atop a new upper stage. Simultaneously breaking a drought of fairing catches, GO Ms. Tree and GO Ms. Chief successfully caught both halves of said payload fairing in their respective nets for the first time ever. Protected from saltwater immersion that can easily corrode the aluminum both inside and outside the fairings, the successful catch all but guarantees that SpaceX will be able to quickly and easily reuse this fairing on a future Starlink mission.

Advertisement
-->

Two simultaneously successful catches after 12 attempts – three successful – in ~30 months is either an extraordinary fluke or a sign that SpaceX may have solved fairing recovery after years of hard work and iterative improvement. SpaceX’s next firm launch is scheduled no earlier than July 30th and another Starlink mission could potentially happen between now and then, so the company should have several attempts to test its fairing recovery luck in the near future.

Ms. Tree (formerly Mr. Steven) snagged one half of ANASIS II fairing 38 minutes after liftoff. (SpaceX)
Ms. Chief followed suit with her own catch almost exactly three minutes later. (SpaceX)

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla accused of infringing robotics patents in new lawsuit

Published

on

tesla store in New York City
Credit: Tesla

Tesla is being accused of infringing robotics patents by a company called Perrone Robotics, which is based out of Charlottesville, Virginia.

The suit was filed in Alexandria, Virginia, and accuses Tesla of knowingly infringing upon five patents related to robotics systems for self-driving vehicles.

The company said its founder, Paul Perrone, developed general-purpose robotics operating systems for individual robots and automated devices.

Perrone Robotics claims that all Tesla vehicles utilizing the company’s Autopilot suite within the last six years infringe the five patents, according to a report from Reuters.

Tesla’s new Safety Report shows Autopilot is nine times safer than humans

One patent was something the company attempted to sell to Tesla back in 2017. The five patents cover a “General Purpose Operating System for Robotics,” otherwise known as GPROS.

The GPROS suite includes extensions for autonomous vehicle controls, path planning, and sensor fusion. One key patent, U.S. 10,331,136, was explicitly offered to Tesla by Perrone back in 2017, but the company rejected it.

The suit aims to halt any further infringements and seeks unspecified damages.

This is far from the first suit Tesla has been involved in, including one from his year with Perceptive Automata LLC, which accused Tesla of infringing on AI models to interpret pedestrian/cyclist intent via cameras without licensing. Tesla appeared in court in August, but its motion to dismiss was partially denied earlier this month.

Tesla also settled a suit with Arsus LLC, which accused Autopilot’s electronic stability features of infringing on rollover prevention tech. Tesla won via an inter partes review in September.

Most of these cases involve non-practicing entities or startups asserting broad autonomous vehicle patents against Tesla’s rapid iteration.

Tesla typically counters with those inter partes reviews, claiming invalidity. Tesla has successfully defended about 70 percent of the autonomous vehicle lawsuits it has been involved in since 2020, but settlements are common to avoid discovery costs.

The case is Perrone Robotics Inc v Tesla Inc, U.S. District Court, Eastern District of Virginia, No. 25-02156. Tesla has not yet listed an attorney for the case, according to the report.

Continue Reading

News

Tesla has passed a critical self-driving milestone Elon Musk listed in Master Plan Part Deux

Tesla China announced that the company’s Autopilot system has accumulated 10 billion kilometers of driving experience.

Published

on

Tesla has passed a key milestone, and it was one that CEO Elon Musk initially mentioned more than nine years ago when he published Master Plan, Part Deux. 

As per Tesla China in a post on its official Weibo account, the company’s Autopilot system has accumulated over 10 billion kilometers of real-world driving experience.

Tesla China’s subtle, but huge announcement

In its Weibo post, Tesla China announced that the company’s Autopilot system has accumulated 10 billion kilometers of driving experience. “In this respect, Tesla vehicles equipped with Autopilot technology can be considered to have the world’s most experienced and seasoned driver.” 

Tesla AI’s handle on Weibo also highlighted a key advantage of the company’s self-driving system. “It will never drive under the influence of alcohol, be distracted, or be fatigued,” the team wrote. “We believe that advancements in Autopilot technology will save more lives.”

Tesla China did not clarify exactly what it meant by “Autopilot” in its Weibo post, though the company’s intense focus on FSD over the past years suggests that the term includes miles that were driven by FSD (Beta) and Full Self-Driving (Supervised). Either way, 10 billion cumulative miles of real-world data is something that few, if any, competitors could compete with.

Advertisement
-->

Elon Musk’s 10-billion-km estimate, way back in 2016

When Elon Musk published Master Plan Part Deux, he outlined his vision for the company’s autonomous driving system. At the time, Autopilot was still very new, though Musk was already envisioning how the system could get regulatory approval worldwide. He estimated that worldwide regulatory approval will probably require around 10 billion miles of real-world driving data, which was an impossible-sounding amount at the time. 

“Even once the software is highly refined and far better than the average human driver, there will still be a significant time gap, varying widely by jurisdiction, before true self-driving is approved by regulators. We expect that worldwide regulatory approval will require something on the order of 6 billion miles (10 billion km). Current fleet learning is happening at just over 3 million miles (5 million km) per day,” Musk wrote. 

It’s quite interesting but Tesla is indeed getting regulatory approval for FSD (Supervised) at a steady pace today, at a time when 10 billion miles of data has been achieved. The system has been active in the United States and has since been rolled out to other countries such as Australia, New Zealand, China, and, more recently, South Korea. Expectations are high that Tesla could secure FSD approval in Europe sometime next year as well. 

https://www.youtube.com/shorts/8n3hR6IG-HU?feature=share
Continue Reading

Elon Musk

SpaceX maintains unbelievable Starship target despite Booster 18 incident

It appears that it will take more than an anomaly to stop SpaceX’s march towards Starship V3’s refinement.

Published

on

Credit: SpaceX/X

SpaceX recently shared an incredibly ambitious and bold update about Starship V3’s 12th test flight. 

Despite the anomaly that damaged Booster 18, SpaceX maintained that it was still following its plans for the upgraded spacecraft and booster for the coming months. Needless to say, it appears that it will take more than an anomaly to stop SpaceX’s march towards Starship V3’s refinement. 

Starship V3 is still on a rapid development path

SpaceX’s update was posted through the private space company’s official account on social media platform X. As per the company, “the Starbase team plans to have the next Super Heavy booster stacked in December, which puts it on pace with the test schedule planned for the first Starship V3 vehicle and associated ground systems.” 

SpaceX then announced that Starship V3’s maiden flight is still expected to happen early next year. “Starship’s twelfth flight test remains targeted for the first quarter of 2026,” the company wrote in its post on X. 

Elon Musk mentioned a similar timeline on X earlier this year. In the lead up to Starshp Flight 11, which proved flawless, Musk stated that “Starship V3 is a massive upgrade from the current V2 and should be through production and testing by end of year, with heavy flight activity next year.” Musk has also mentioned that Starship V3 should be good enough to use for initial Mars missions.

Advertisement
-->

Booster 18 failure not slowing Starship V3’s schedule

SpaceX’s bold update came after Booster 18 experienced a major anomaly during gas system pressure testing at SpaceX’s Massey facility in Starbase, Texas. SpaceX confirmed in a post on X that no propellant was loaded, no engines were installed, and personnel were positioned at a safe distance when the booster’s lower section crumpled, resulting in no injuries.

Still, livestream footage showed significant damage around the liquid oxygen tank area of Booster 18, leading observers to speculate that the booster was a total loss. Booster 18 was among the earliest vehicles in the Starship V3 series, making the failure notable. Despite the setback, Starship V3’s development plans appear unchanged, with SpaceX pushing ahead of its Q1 2026 test flight target.

Continue Reading