News
SpaceX scraps Starship SN8 wreckage, clears landing zone for next launch
In spite of tentative plans for preservation, SpaceX has fully scrapped the wreckage of the first high-altitude Starship prototype, clearing the landing zone it impacted for its successor’s imminent launch debut.
Known as serial number 8 or SN8, the Starship prototype was the first of any kind to fly beyond 150 meters (~500 ft), reaching an altitude of 12.5 km (~7.8 mi) on December 9th during its breathtaking launch debut. In an unexpected twist, SpaceX kept Starship SN8’s thrust to weight ratio as low as possible, stretching what could have been a two or three-minute test into an almost seven-minute ordeal with three consecutive Raptor engine cutoffs during the ascent.
At apogee, SN8 used cold gas thrusters to flip into a belly-down orientation and free-fell ~95% of the way back to Earth before igniting two of its three Raptor engines, performing a wild powered flip back into a vertical landing position and nearly securing a soft landing. Unfortunately, around 10-20 seconds before that planned landing, what Musk later described as low methane header tank pressure starved the Starship’s engines of fuel and more or less cut all appreciable thrust, causing SN8 to reach its landing zone traveling about 40 m/s (~90 mph) too fast. The rocket impacted the concrete pad, crumpled, and exploded.
By all accounts, success was one of the less likely outcomes SpaceX expected from SN8’s high-altitude debut, with Musk himself estimating the odds of total success to be just 33%. Additionally, Starship SN8 effectively made it all the way to a low-speed landing regime that Starships SN5 and SN6 all but flawlessly demonstrated with back-to-back 150m hops and landings in August and September 2020.

In other words, despite the explosive end, SN8’s high-altitude launch debut was a spectacular success for SpaceX’s Starship program – possibly even preferable to a perfect landing given that it uncovered an unexpected issue with fuel tank pressurization. Beyond the landing failure, the Starship checked every single box on SpaceX’s test flight list, successfully debuting multiple Raptors, demonstrating multiple in-flight engine shutdowns and engine relights; proving that an unprecedented ‘skydiver-style’ landing maneuver is possible and viable; and successfully testing Starship’s ability to control itself in that bellyflop orientation with thrusters and four massive flaps.
Speaking in a recent interview with Ars Technica, in the words of pragmatic SpaceX COO and President Gwynne Shotwell, SN8’s launch debut “de-risked [the Starship] program pretty massively.” According to Musk, SpaceX engineers were quickly able to determine why Starship SN8’s methane header tank was unable to maintain the fuel flow (pressure) needed for Raptor’s landing burn(s) and quickly implemented a solution.


Instead of pressurizing autogenously with methane gas, Starship SN9 will use helium to pressurize its fuel header tank, serving as a temporary fix while SpaceX determines what changes need to be made to get rid of that helium crutch. Landing pad now cleared of Starship remains and SN8’s impact crater more or less repaired, the only thing standing between Starship SN9 and its own 12.5 km launch debut is a triple-Raptor static fire test. Originally expected as early as January 4th, SpaceX never made it more than a few minutes into the attempt, while a backup window on January 5th was canceled later that evening. The test could now occur no earlier than (NET) Wednesday, January 6th.


Thankfully, although SpaceX was unable to save the entirety of Starship SN8’s wrecked nose section, the company did manage to extract a largely intact nose flap. The rest of the remains were scrapped on site and trucked away but it’s possible that certain significant components of SN8 – particularly the recovered flap – will eventually find themselves on display at one or more SpaceX facilities.
News
Tesla Robotaxi has a highly-requested hardware feature not available on typical Model Ys
These camera washers are crucial for keeping the operation going, as they are the sole way Teslas operate autonomously. The cameras act as eyes for the car to drive, recognize speed limit and traffic signs, and travel safely.
Tesla Robotaxi has a highly-requested hardware feature that is not available on typical Model Ys that people like you and me bring home after we buy them. The feature is something that many have been wanting for years, especially after the company adopted a vision-only approach to self-driving.
After Tesla launched driverless Robotaxi rides to the public earlier this week in Austin, people have been traveling to the Lone Star State in an effort to hopefully snag a ride from one of the few vehicles in the fleet that are now no longer required to have Safety Monitors present.
BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor
Although only a few of those completely driverless rides are available, there have been some new things seen on these cars that are additions from regular Model Ys, including the presence of one new feature: camera washers.
With the Model Y, there has been a front camera washer, but the other exterior “eyes” have been void of any solution for this. For now, owners are required to clean them manually.
In Austin, Tesla is doing things differently. It is now utilizing camera washers on the side repeater and rear bumper cameras, which will keep the cameras clean and keep operation as smooth and as uninterrupted as possible:
🚨 Tesla looks to have installed Camera Washers on the side repeater cameras on Robotaxis in Austin
pic.twitter.com/xemRtDtlRR— TESLARATI (@Teslarati) January 23, 2026
Rear Camera Washer on Tesla Robotaxi pic.twitter.com/P9hgGStHmV
— TESLARATI (@Teslarati) January 24, 2026
These camera washers are crucial for keeping the operation going, as they are the sole way Teslas operate autonomously. The cameras act as eyes for the car to drive, recognize speed limit and traffic signs, and travel safely.
This is the first time we are seeing them, so it seems as if Safety Monitors might have been responsible for keeping the lenses clean and unobstructed previously.
However, as Tesla transitions to a fully autonomous self-driving suite and Robotaxi expands to more vehicles in the Robotaxi fleet, it needed to find a way to clean the cameras without any manual intervention, at least for a short period, until they can return for interior and exterior washing.
News
Tesla makes big Full Self-Driving change to reflect future plans
Tesla made a dramatic change to the Online Design Studio to show its plans for Full Self-Driving, a major part of the company’s plans moving forward, as CEO Elon Musk has been extremely clear on the direction moving forward.
With Tesla taking a stand and removing the ability to purchase Full Self-Driving outright next month, it is already taking steps to initiate that with owners and potential buyers.
On Thursday night, the company updated its Online Design Studio to reflect that in a new move that now lists the three purchase options that are currently available: Monthly Subscription, One-Time Purchase, or Add Later:
🚨 Check out the change Tesla made to its Online Design Studio:
It now lists the Monthly Subscription as an option for Full Self-Driving
It also shows the outright purchase option as expiring on February 14 pic.twitter.com/pM6Svmyy8d
— TESLARATI (@Teslarati) January 23, 2026
This change replaces the former option for purchasing Full Self-Driving at the time of purchase, which was a simple and single box to purchase the suite outright. Subscriptions were activated through the vehicle exclusively.
However, with Musk announcing that Tesla would soon remove the outright purchase option, it is clearer than ever that the Subscription plan is where the company is headed.
The removal of the outright purchase option has been a polarizing topic among the Tesla community, especially considering that there are many people who are concerned about potential price increases or have been saving to purchase it for $8,000.
This would bring an end to the ability to pay for it once and never have to pay for it again. With the Subscription strategy, things are definitely going to change, and if people are paying for their cars monthly, it will essentially add $100 per month to their payment, pricing some people out. The price will increase as well, as Musk said on Thursday, as it improves in functionality.
I should also mention that the $99/month for supervised FSD will rise as FSD’s capabilities improve.
The massive value jump is when you can be on your phone or sleeping for the entire ride (unsupervised FSD). https://t.co/YDKhXN3aaG
— Elon Musk (@elonmusk) January 23, 2026
Those skeptics have grown concerned that this will actually lower the take rate of Full Self-Driving. While it is understandable that FSD would increase in price as the capabilities improve, there are arguments for a tiered system that would allow owners to pay for features that they appreciate and can afford, which would help with data accumulation for the company.
Musk’s new compensation package also would require Tesla to have 10 million active FSD subscriptions, but people are not sure if this will move the needle in the correct direction. If Tesla can potentially offer a cheaper alternative that is not quite unsupervised, things could improve in terms of the number of owners who pay for it.
News
Tesla Model S completes first ever FSD Cannonball Run with zero interventions
The coast-to-coast drive marked the first time Tesla’s FSD system completed the iconic, 3,000-mile route end to end with no interventions.
A Tesla Model S has completed the first-ever full Cannonball Run using Full Self-Driving (FSD), traveling from Los Angeles to New York with zero interventions. The coast-to-coast drive marked the first time Tesla’s FSD system completed the iconic, 3,000-mile route end to end, fulfilling a long-discussed benchmark for autonomy.
A full FSD Cannonball Run
As per a report from The Drive, a 2024 Tesla Model S with AI4 and FSD v14.2.2.3 completed the 3,081-mile trip from Redondo Beach in Los Angeles to midtown Manhattan in New York City. The drive was completed by Alex Roy, a former automotive journalist and investor, along with a small team of autonomy experts.
Roy said FSD handled all driving tasks for the entirety of the route, including highway cruising, lane changes, navigation, and adverse weather conditions. The trip took a total of 58 hours and 22 minutes at an average speed of 64 mph, and about 10 hours were spent charging the vehicle. In later comments, Roy noted that he and his team cleaned out the Model S’ cameras during their stops to keep FSD’s performance optimal.Â
History made
The historic trip was quite impressive, considering that the journey was in the middle of winter. This meant that FSD didn’t just deal with other cars on the road. The vehicle also had to handle extreme cold, snow, ice, slush, and rain.
As per Roy in a post on X, FSD performed so well during the trip that the journey would have been completed faster if the Model S did not have people onboard. “Elon Musk was right. Once an autonomous vehicle is mature, most human input is error. A comedy of human errors added hours and hundreds of miles, but FSD stunned us with its consistent and comfortable behavior,” Roy wrote in a post on X.
Roy’s comments are quite notable as he has previously attempted Cannonball Runs using FSD on December 2024 and February 2025. Neither were zero intervention drives.
