News
SpaceX scraps Starship SN8 wreckage, clears landing zone for next launch
In spite of tentative plans for preservation, SpaceX has fully scrapped the wreckage of the first high-altitude Starship prototype, clearing the landing zone it impacted for its successor’s imminent launch debut.
Known as serial number 8 or SN8, the Starship prototype was the first of any kind to fly beyond 150 meters (~500 ft), reaching an altitude of 12.5 km (~7.8 mi) on December 9th during its breathtaking launch debut. In an unexpected twist, SpaceX kept Starship SN8’s thrust to weight ratio as low as possible, stretching what could have been a two or three-minute test into an almost seven-minute ordeal with three consecutive Raptor engine cutoffs during the ascent.
At apogee, SN8 used cold gas thrusters to flip into a belly-down orientation and free-fell ~95% of the way back to Earth before igniting two of its three Raptor engines, performing a wild powered flip back into a vertical landing position and nearly securing a soft landing. Unfortunately, around 10-20 seconds before that planned landing, what Musk later described as low methane header tank pressure starved the Starship’s engines of fuel and more or less cut all appreciable thrust, causing SN8 to reach its landing zone traveling about 40 m/s (~90 mph) too fast. The rocket impacted the concrete pad, crumpled, and exploded.
By all accounts, success was one of the less likely outcomes SpaceX expected from SN8’s high-altitude debut, with Musk himself estimating the odds of total success to be just 33%. Additionally, Starship SN8 effectively made it all the way to a low-speed landing regime that Starships SN5 and SN6 all but flawlessly demonstrated with back-to-back 150m hops and landings in August and September 2020.

In other words, despite the explosive end, SN8’s high-altitude launch debut was a spectacular success for SpaceX’s Starship program – possibly even preferable to a perfect landing given that it uncovered an unexpected issue with fuel tank pressurization. Beyond the landing failure, the Starship checked every single box on SpaceX’s test flight list, successfully debuting multiple Raptors, demonstrating multiple in-flight engine shutdowns and engine relights; proving that an unprecedented ‘skydiver-style’ landing maneuver is possible and viable; and successfully testing Starship’s ability to control itself in that bellyflop orientation with thrusters and four massive flaps.
Speaking in a recent interview with Ars Technica, in the words of pragmatic SpaceX COO and President Gwynne Shotwell, SN8’s launch debut “de-risked [the Starship] program pretty massively.” According to Musk, SpaceX engineers were quickly able to determine why Starship SN8’s methane header tank was unable to maintain the fuel flow (pressure) needed for Raptor’s landing burn(s) and quickly implemented a solution.


Instead of pressurizing autogenously with methane gas, Starship SN9 will use helium to pressurize its fuel header tank, serving as a temporary fix while SpaceX determines what changes need to be made to get rid of that helium crutch. Landing pad now cleared of Starship remains and SN8’s impact crater more or less repaired, the only thing standing between Starship SN9 and its own 12.5 km launch debut is a triple-Raptor static fire test. Originally expected as early as January 4th, SpaceX never made it more than a few minutes into the attempt, while a backup window on January 5th was canceled later that evening. The test could now occur no earlier than (NET) Wednesday, January 6th.


Thankfully, although SpaceX was unable to save the entirety of Starship SN8’s wrecked nose section, the company did manage to extract a largely intact nose flap. The rest of the remains were scrapped on site and trucked away but it’s possible that certain significant components of SN8 – particularly the recovered flap – will eventually find themselves on display at one or more SpaceX facilities.
News
Tesla hosts Rome Mayor for first Italian FSD Supervised road demo
The event marked the first time an Italian mayor tested the advanced driver-assistance system in person in Rome’s urban streets.
Tesla definitely seems to be actively engaging European officials on FSD’s capabilities, with the company hosting Rome Mayor Roberto Gualtieri and Mobility Assessor Eugenio Patanè for a hands-on road demonstration.
The event marked the first time an Italian mayor tested the advanced driver-assistance system in person in Rome’s urban streets. This comes amid Tesla’s push for FSD’s EU regulatory approvals in the coming year.
Rome officials experience FSD Supervised
Tesla conducted the demo using a Model 3 equipped with Full Self-Driving (Supervised), tackling typical Roman traffic including complex intersections, roundabouts, pedestrian crossings and mixed users like cars, bikes and scooters.
The system showcased AI-based assisted driving, prioritizing safety while maintaining flow. FSD also handled overtakes and lane decisions, though with constant driver supervision.
Investor Andrea Stroppa detailed the event on X, noting the system’s potential to reduce severe collision risks by up to seven times compared to traditional driving, based on Tesla’s data from billions of global fleet miles. The session highlighted FSD’s role as an assistance tool in its Supervised form, not a replacement, with the driver fully responsible at all times.
Path to European rollout
Tesla has logged over 1 million kilometers of testing across 17 European countries, including Italy, to refine FSD for local conditions. The fact that Rome officials personally tested FSD Supervised bodes well for the program’s approval, as it suggests that key individuals are closely watching Tesla’s efforts and innovations.
Assessor Patanè also highlighted the administration’s interest in technologies that boost road safety and urban travel quality, viewing them as aids for both private and public transport while respecting rules.
Replies on X urged involving Italy’s Transport Ministry to speed approvals, with one user noting, “Great idea to involve the mayor! It would be necessary to involve components of the Ministry of Transport and the government as soon as possible: it’s they who can accelerate the approval of FSD in Italy.”
News
Tesla FSD (Supervised) blows away French journalist after test ride
Cadot described FSD as “mind-blowing,” both for the safety of the vehicle’s driving and the “humanity” of its driving behaviors.
Tesla’s Full Self-Driving (Supervised) seems to be making waves in Europe, with French tech journalist Julien Cadot recently sharing a positive first-hand experience from a supervised test drive in France.
Cadot, who tested the system for Numerama after eight years of anticipation since early Autopilot trials, described FSD as “mind-blowing,” both for the safety of the vehicle’s driving and the “humanity” of its driving behaviors.
Julien Cadot’s FSD test in France
Cadot announced his upcoming test on X, writing in French: “I’m going to test Tesla’s FSD for Numerama in France. 8 years I’ve been waiting to relive the sensations of our very first contact with the unbridled Autopilot of the 2016s.” He followed up shortly after with an initial reaction, writing: “I don’t want to spoil too much because as media we were allowed to film everything and I have a huge video coming… But: it’s mind-blowing! Both for safety and for the ‘humanity’ of the choices.”
His later posts detailed FSD’s specific maneuvers that he found particularly compelling. These include the vehicle safely overtaking a delivery truck by inches, something Cadot said he personally would avoid to protect his rims, but FSD handled flawlessly. He also praised FSD’s cyclist overtakes, as the system always maintained the required 1.5-meter distance by encroaching on the opposite lane when clear. Ultimately, Cadot noted FSD’s decision-making prioritized safety and advancement, which is pretty remarkable.
FSD’s ‘human’ edge over Autopilot
When asked if FSD felt light-years ahead of standard Autopilot, Cadot replied: “It’s incomparable, it’s not the same language.” He elaborated on scenarios like bypassing a parked delivery truck across a solid white line, where FSD assessed safety and proceeded just as a human driver might, rather than halting indefinitely. This “humanity” impressed Cadot the most, as it allowed FSD to fluidly navigate real-world chaos like urban Paris traffic.
Tesla is currently hard at work pushing for the rollout of FSD to several European countries. Recent reports have revealed that Tesla has received approval to operate 19 FSD test vehicles on Spain’s roads, though this number could increase as the program develops. As per the Dirección General de Tráfico (DGT), Tesla would be able to operate its FSD fleet on any national route across Spain. Recent job openings also hint at Tesla starting FSD tests in Austria. Apart from this, the company is also holding FSD demonstrations in Germany, France, and Italy.
Elon Musk
Tesla Optimus shows off its newest capability as progress accelerates
Tesla Optimus showed off its newest capability as progress on the project continues to accelerate toward an ultimate goal of mass production in the coming years.
Tesla is still developing Optimus and preparing for the first stages of mass production, where units would be sold and shipped to customers. CEO Elon Musk has always marketed the humanoid robot as the biggest product in history, even outside of Tesla, but of all time.
He believes it will eliminate the need to manually perform monotonous tasks, like cleaning, mowing the lawn, and folding laundry.
However, lately, Musk has revealed even bigger plans for Optimus, including the ability to relieve humans of work entirely within the next 20 years.
JUST IN: Elon Musk says working will be ‘optional’ in less than 20 years because of AI and robotics. pic.twitter.com/l3S5kl5HBB
— Watcher.Guru (@WatcherGuru) November 30, 2025
Development at Tesla’s Artificial Intelligence and Robotics teams has progressed, and a new video was shown of the robot taking a light jog with what appeared to be some pretty natural form:
Just set a new PR in the lab pic.twitter.com/8kJ2om7uV7
— Tesla Optimus (@Tesla_Optimus) December 2, 2025
Optimus has also made several public appearances lately, including one at the Neural Information Processing Systems, or NeurIPS Conference. Some spectators shared videos of Optimus’s charging rig, as well as its movements and capabilities, most interestingly, the hand:
You have to hand it to Elon 🤟 pic.twitter.com/fZKDlmGAbe
— Ric Burton · NeurIPS 2025 (@_ricburton) December 2, 2025
The hand, forearm, and fingers have been one of the most evident challenges for Tesla in recent times, especially as it continues to work on its 3rd Generation iteration of Optimus.
Musk said during the Q3 Earnings Call:
“I don’t want to downplay the difficulty, but it’s an incredibly difficult thing, especially to create a hand that is as dexterous and capable as the human hand, which is incredible. The human hand is an incredible thing. The more you study the human hand, the more incredible you realize it is, and why you need four fingers and a thumb, why the fingers have certain degrees of freedom, why the various muscles are of different strengths, and fingers are of different lengths. It turns out that those are all there for a reason.”
The interesting part of the Optimus program so far is the fact that Tesla has made a lot of progress with other portions of the project, like movement, for example, which appears to have come a long way.
However, without a functional hand and fingers, Optimus could be rendered relatively useless, so it is evident that it has to figure this crucial part out first.