Connect with us

News

SpaceX indefinitely delays second Falcon 9 launch in two weeks

SpaceX has indefinitely delayed Falcon 9's second Moon lander launch. (SpaceX)

Published

on

For the second time in less than two weeks, SpaceX has indefinitely delayed a Falcon 9 launch after discovering apparent issues with the rocket less than a day before liftoff.

Japanese startup ispace’s misfortune also marks the eighth time in less than two months that SpaceX has delayed or aborted a Falcon 9 launch for unspecified technical reasons less than 24 hours before liftoff. The streak of delays is unusual after 12 months of record-breaking execution, over the course of which SpaceX has successfully completed 60 orbital launches with just a handful of last-minute technical delays.

The number of last-day delays and Falcon 9 launch aborts has abruptly skyrocketed in recent months, possibly indicating that a single problem or change is at least partially responsible for the trend. The streak began in early October and has continued through the end of November, resulting in eight delays in two months, with impacts ranging from minutes to days or even weeks. In all but one instance, SpaceX’s only explanation was a need for more time for “data review” or “checkouts” of the rocket, its payload, or both.

SpaceX consistently announces launch delays on Twitter, making it possible to collate when the company has stated it was “standing down” from a launch attempt or “now targeting” a later launch date for technical reasons. In the 18+ months between March 2021 and October 2022, SpaceX announced only three technical delays after publicly scheduling a launch (one last-second abort and two minor “additional checkouts” delays). Adding to the oddity, SpaceX reported at least 15 similar delays between January 2020 and March 2021.

A decrease in the frequency of technical issues is a generally expected outcome of a competent organization gaining experience with the operation of a complex, new system (like a launch vehicle). By all appearances, that’s the pattern SpaceX was following: a drastic drop in the number of technical launch aborts even as the pace of Falcon 9 launches soared to new heights. But within the last two months, the frequency of technical delays has skyrocketed from close to zero to higher than any point in recent SpaceX history.

Advertisement
-->

Without context, it’s impossible to say if there is an invisible thread connecting the recent string of delays. There are many possible explanations, including workforce fatigue, management changes, policy changes, and factory issues. It’s even possible that the seemingly sudden onset was caused by an intentional change of risk posture: for example, increasing sensitivity to off-nominal signals that had been observed before but were discounted enough to avoid launch delays.

As part of its effort to continually improve existing systems and processes, SpaceX could have changed things too much or removed one too many steps. While unlikely, it’s also possible that the recent uptick in delays is merely a coincidence. Regardless, if the trend continues, it will be difficult for SpaceX to increase its launch cadence any further – particularly toward CEO Elon Musk’s stated goal of 100 launches in 2023. Delays also increase launch costs and disrupt customer plans, incentivizing a return to smoother operations as quickly as possible.

Most concerning is a recent pair of unrelated launches that have become indefinitely delayed. Starlink 2-4, first scheduled to launch on November 18th, has yet to receive a new launch date after SpaceX apparently discovered problems after a Falcon 9 static fire test on November 17th. Less than two weeks later, SpaceX has indefinitely delayed a second Falcon 9 launch – Japanese startup ispace’s first Moon landing attempt – “after further inspections of the launch vehicle and data review.”

Ultimately, launch delays are a fundamental part of spaceflight, and it’s better to keep a rocket on the ground when there is any uncertainty about its readiness for flight. Nonetheless, big changes in the frequency of delays are still noteworthy, especially when SpaceX itself does not typically explain the cause of delays for non-NASA missions.

SpaceX has several more Falcon 9 launches firmly scheduled in December. It remains to be seen how exactly the indefinite delays of Starlink 2-4 and HAKUTO-R will impact those upcoming launches. Starlink 4-37, for example, was scheduled to launch from the same pad as HAKUTO-R as early as December 6th, but that date will slip for every day HAKUTO-R is delayed. A SpaceX ship tasked with recovering HAKUTO-R’s Falcon 9 fairing appears to be heading back to port, indicating a delay of at least two or three days.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla FSD fleet is nearing 7 billion total miles, including 2.5 billion city miles

As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles.

Published

on

Tesla’s Full Self-Driving (Supervised) fleet is closing in on almost 7 billion total miles driven, as per data posted by the company on its official FSD webpage. 

These figures hint at the massive scale of data fueling Tesla’s rapid FSD improvements, which have been quite notable as of late.

FSD mileage milestones

As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles. Tesla owner and avid FSD tester Whole Mars Catalog also shared a screenshot indicating that from the nearly 7 billion miles traveled by the FSD fleet, more than 2.5 billion miles were driven inside cities. 

City miles are particularly valuable for complex urban scenarios like unprotected turns, pedestrian interactions, and traffic lights. This is also the difference-maker for FSD, as only complex solutions, such as Waymo’s self-driving taxis, operate similarly on inner-city streets. And even then, incidents such as the San Francisco blackouts have proven challenging for sensor-rich vehicles like Waymos. 

Tesla’s data edge

Tesla has a number of advantages in the autonomous vehicle sector, one of which is the size of its fleet and the number of vehicles training FSD on real-world roads. Tesla’s nearly 7 billion FSD miles then allow the company to roll out updates that make its vehicles behave like they are being driven by experienced drivers, even if they are operating on their own. 

Advertisement
-->

So notable are Tesla’s improvements to FSD that NVIDIA Director of Robotics Jim Fan, after experiencing FSD v14, noted that the system is the first AI that passes what he described as a “Physical Turing Test.” 

“Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies,” Fan wrote in a post on X. 

Continue Reading

News

Tesla starts showing how FSD will change lives in Europe

Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.

Published

on

Credit: Grok Imagine

Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options. 

Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.

Officials see real impact on rural residents

Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”

The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.

What the Ministry for Economic Affairs and Transport says

Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents. 

Advertisement
-->

“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe. 

“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post

Continue Reading

News

Tesla China quietly posts Robotaxi-related job listing

Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.

Published

on

Credit: Tesla

Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China. 

As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.

Robotaxi-specific role

The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi. 

Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.

China Robotaxi launch

China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.

Advertisement
-->

This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees. 

Continue Reading