Connect with us

News

SpaceX bests Boeing to become NASA’s largest for-profit vendor

Published

on

Fourteen years after winning its first major NASA contract, data shared by Aviation Week reporter Irene Klotz shows that SpaceX has usurped every other major aerospace company in the US to become the space agency’s largest for-profit vendor.

SpaceX’s ascension up those ranks has been arduous and far from guaranteed, but the company now provides NASA with a wide range of relatively affordable spaceflight services. SpaceX was paid a record $2.04 billion for those services in the 2022 fiscal year. Only the California Institute of Technology (Caltech), a nonprofit that includes the entirety of the Jet Propulsion Laboratory (JPL) and received $2.68 billion in the same period, ranks higher on NASA’s list of FY2022 vendors. Boeing came in third with $1.72 billion, followed by Lockheed Martin with $1.34 billion.

Cargo

NASA kickstarted its relationship with SpaceX in December 2008 when it awarded the company a $1.5 billion contract to develop the first versions of the Cargo Dragon spacecraft and Falcon 9 rocket and deliver cargo to the International Space Station (ISS). Famously, founder and CEO Elon Musk once told 60 Minutes that, to a degree, NASA’s contract saved SpaceX from imminent bankruptcy and possible dissolution.

Saved by the infusion of resources, SpaceX successfully debuted Falcon 9 in June 2010 and began operational ISS cargo deliveries under NASA’s Commercial Resupply Services (CRS) program in October 2012. Aside from a survivable engine failure on CRS-1 (2012) and one catastrophic Falcon 9 failure on CRS-7 (2015), NASA and SpaceX’s CRS cooperation has been a thorough success. SpaceX is just a few weeks away from CRS-26, which will likely become Cargo Dragon’s 26th successful ISS cargo delivery in 10 years.

NASA ultimately paid SpaceX $3.04 billion to complete its first 20 CRS missions. SpaceX’s newer CRS-2 contract, which bore launches in January 2021, has 15 missions on contract and will likely cost NASA another $3.5 billion by the mid-2020s. SpaceX launches an average of three CRS missions per year, likely translating to about $700 million in annual revenue. SpaceX completed two Cargo Dragon launches for NASA in FY2022.

Advertisement
-->
SpaceX completed its last Cargo Dragon 1 launch in March 2020. (Richard Angle)
Cargo Dragon 2 rolls out for its fifth ISS cargo delivery in July 2022. (SpaceX)

Crew

The second biggest contributor to SpaceX’s NASA revenue is Crew Dragon. In 2014, NASA contracted with SpaceX and Boeing to independently develop spacecraft capable of safely transporting astronauts to and from the International Space Station (ISS), taking over the role the Space Shuttle and Russian Soyuz spacecraft filled from 2000 to 2020. Crew Dragon completed its first uncrewed orbital test flight in March 2019 and its first crewed test flight in May 2020. Operational launches began in November 2020.

Subverting all expectations, Boeing’s Starliner crew capsule completed its first fully successful uncrewed test flight in May 2022, a full three years behind SpaceX. Starliner’s first crewed test flight is now scheduled no earlier than (NET) February 2023, while its first operational astronaut launch is tentatively scheduled for Q3 2023 at the earliest. Thanks to Boeing’s woeful performance, SpaceX has been responsible for launching every NASA astronaut (save one) since late 2020 and will continue to do so well into 2023. That means that SpaceX is on call for two Crew Dragon launches per year for NASA, whereas the Commercial Crew Program originally hoped that SpaceX and Boeing would each launch once per year.

In 2022, NASA took the extraordinary step of purchasing eight additional Crew Dragon launches while buying zero extra Starliner launches. Through 2030, SpaceX is now under contract to complete 14 operational Crew Dragon missions for NASA for $4.93 billion – less than the $5.1 billion NASA will pay Boeing for just six operational Starliner launches. For its first six operational missions, SpaceX is charging NASA about $220 million apiece. For Crew-7 through Crew-14, SpaceX will charge approximately $290 to $300 million per mission.

SpaceX completed two Crew Dragon launches for NASA in FY2022.

SpaceX completed its sixth NASA astronaut launch on October 5th, 2022. (Richard Angle)

Falcon

Aside from launching Dragons for NASA, SpaceX’s Falcon 9 and Falcon Heavy rockets are also heavily relied upon to launch a wide range of scientific spacecraft through the Solar System. Since 2010, NASA’s Launch Services Program (LSP) has paid SpaceX almost $1 billion to complete six launches (worth about $400M) and prepare for at least nine others. The nine additional LSP launches SpaceX is scheduled to complete between November 2022 and June 2026 will cost NASA around $1.4 billion. Five of those missions will use SpaceX’s larger Falcon Heavy rocket and represent more than $1 billion of that $1.4 billion.

In FY2022, SpaceX completed two NASA LSP launches for about $120 million.

SpaceX’s last NASA ISP mission launched the IXPE X-ray telescope in December 2021. (Richard Angle)

Starship

Finally, the last major line item on NASA’s SpaceX expenditures is focused on Starship. In April 2021, NASA awarded SpaceX a $2.9 billion Human Landing System (HLS) contract (~$3 billion including previous funding) to develop a Starship-derived Moon landing system capable of transporting astronauts to and from the lunar surface. Since 2020, NASA has paid SpaceX $1.26 billion for its work on HLS, more than $800 million of which was disbursed in FY2022.

A render of SpaceX’s Starship HLS Moon lander.

All told, a rough estimate of the four programs above accounts for about $1.82 billion of the $2.04 billion NASA paid SpaceX in FY2022. SpaceX was also paid about $50 million for work on its 2024 launch of Europa Clipper, leaving about $170 million that can probably be explained by other advance payments for work on upcoming Dragon and LSP launches.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla quietly flexes FSD’s reliability amid Waymo blackout in San Francisco

“Tesla Robotaxis were unaffected by the SF power outage,” Musk wrote in his post.

Published

on

Tesla highlighted its Full Self-Driving (Supervised) system’s robustness this week by sharing dashcam footage of a vehicle in FSD navigating pitch-black San Francisco streets during the city’s widespread power outage. 

While Waymo’s robotaxis stalled and caused traffic jams, Tesla’s vision-only approach kept operating seamlessly without remote intervention. Elon Musk amplified the clip, highlighting the contrast between the two systems.

Tesla FSD handles total darkness

The @Tesla_AI account posted a video from a Model Y operating on FSD during San Francisco’s blackout. As could be seen in the video, streetlights, traffic signals, and surrounding illumination were completely out, but the vehicle drove confidently and cautiously, just like a proficient human driver.

Musk reposted the clip, adding context to reports of Waymo vehicles struggling in the same conditions. “Tesla Robotaxis were unaffected by the SF power outage,” Musk wrote in his post. 

Musk and the Tesla AI team’s posts highlight the idea that FSD operates a lot like any experienced human driver. Since the system does not rely on a variety of sensors and a complicated symphony of factors, vehicles could technically navigate challenging circumstances as they emerge. This definitely seemed to be the case in San Francisco.  

Advertisement
-->

Waymo’s blackout struggles

Waymo faced scrutiny after multiple self-driving Jaguar I-PACE taxis stopped functioning during the blackout, blocking lanes, causing traffic jams, and requiring manual retrieval. Videos shared during the power outage showed fleets of Waymo vehicles just stopping in the middle of the road, seemingly confused about what to do when the lights go out. 

In a comment, Waymo stated that its vehicles treat nonfunctional signals as four-way stops, but “the sheer scale of the outage led to instances where vehicles remained stationary longer than usual to confirm the state of the affected intersections. This contributed to traffic friction during the height of the congestion.”

A company spokesperson also shared some thoughts about the incidents. “Yesterday’s power outage was a widespread event that caused gridlock across San Francisco, with non-functioning traffic signals and transit disruptions. While the failure of the utility infrastructure was significant, we are committed to ensuring our technology adjusts to traffic flow during such events,” the Waymo spokesperson stated, adding that it is “focused on rapidly integrating the lessons learned from this event, and are committed to earning and maintaining the trust of the communities we serve every day.”

Continue Reading

News

Waymo scrutinized after self-driving taxis cause traffic jams during SF blackout

It’s not farfetched to speculate that it would have been a doomsday scenario for Tesla had FSD behaved this way.

Published

on

Credit: @AnnTrades/X

A power outage across San Francisco over the weekend forced numerous Waymo self-driving taxis to stop at darkened intersections and cause traffic blockages in multiple locations across the city. The disruption left riders stranded, frustrated drivers blocked, and city officials stepping in as the Alphabet-owned company temporarily suspended service amid the widespread gridlock.

Needless to say, it would likely have been a doomsday scenario for Tesla had FSD behaved in a similar way, especially if fleets of its robotaxis blocked traffic for numerous drivers. 

Power outage halts Waymo fleet

The outage knocked out electricity for tens of thousands of customers, leaving traffic signals dark across large parts of the city, as noted in a report from the New York Times. Waymo vehicles began stopping at intersections and remained stationary for extended periods, seemingly unable to operate. Tow truck operators worked through the night removing immobilized vehicles, while videos circulated online showing Waymos with hazard lights flashing as traffic backed up around them.

Waymo later confirmed that it had paused its Bay Area ride-hailing service after the San Francisco mayor’s office contacted the company about the congestion its vehicles were contributing to. Service began coming back online shortly after 3:30 p.m. local time, though some users still reported being unable to request rides. Waymo maintained that no injuries or accidents were reported during the outage.

Autonomous cars during emergencies

The incident surprised industry observers since autonomous vehicles are designed to function during signal outages and temporary connectivity losses. Waymo stated that its vehicles treat nonfunctional signals as four-way stops, but “the sheer scale of the outage led to instances where vehicles remained stationary longer than usual to confirm the state of the affected intersections. This contributed to traffic friction during the height of the congestion.” Experts suggested the problem may have been linked to the vehicles’ reliance on remote assistance teams, which help resolve complex situations the cars cannot handle independently.

Advertisement
-->

“Yesterday’s power outage was a widespread event that caused gridlock across San Francisco, with non-functioning traffic signals and transit disruptions. While the failure of the utility infrastructure was significant, we are committed to ensuring our technology adjusts to traffic flow during such events,” the Waymo spokesperson stated, adding that it is “focused on rapidly integrating the lessons learned from this event, and are committed to earning and maintaining the trust of the communities we serve every day.”

Continue Reading

News

Tesla aims to combat common Full Self-Driving problem with new patent

Tesla writes in the patent that its autonomous and semi-autonomous vehicles are heavily reliant on camera systems to navigate and interact with their environment.

Published

on

Credit: @samsheffer | x

Tesla is aiming to combat a common Full Self-Driving problem with a new patent.

One issue with Tesla’s vision-based approach is that sunlight glare can become a troublesome element of everyday travel. Full Self-Driving is certainly an amazing technology, but there are still things Tesla is aiming to figure out with its development.

Unfortunately, it is extremely difficult to get around this issue, and even humans need ways to combat it when they’re driving, as we commonly use sunglasses or sun visors to give us better visibility.

Cameras obviously do not have these ways to fight sunglare, but a new patent Tesla recently had published aims to fight this through a “glare shield.”

Tesla writes in the patent that its autonomous and semi-autonomous vehicles are heavily reliant on camera systems to navigate and interact with their environment.

The ability to see surroundings is crucial for accurate performance, and glare is one element of interference that has yet to be confronted.

Tesla described the patent, which will utilize “a textured surface composed of an array of micro-cones, or cone-shaped formations, which serve to scatter incident light in various directions, thereby reducing glare and improving camera vision.”

The patent was first spotted by Not a Tesla App.

The design of the micro-cones is the first element of the puzzle to fight the excess glare. The patent says they are “optimized in size, angle, and orientation to minimize Total Hemispherical Reflectance (THR) and reflection penalty, enhancing the camera’s ability to accurately interpret visual data.”

Additionally, there is an electromechanical system for dynamic orientation adjustment, which will allow the micro-cones to move based on the angle of external light sources.

This is not the only thing Tesla is mulling to resolve issues with sunlight glare, as it has also worked on two other ways to combat the problem. One thing the company has discussed is a direct photon count.

CEO Elon Musk said during the Q2 Earnings Call:

“We use an approach which is direct photon count. When you see a processed image, so the image that goes from the sort of photon counter — the silicon photon counter — that then goes through a digital signal processor or image signal processor, that’s normally what happens. And then the image that you see looks all washed out, because if you point the camera at the sun, the post-processing of the photon counting washes things out.”

Future Hardware iterations, like Hardware 5 and Hardware 6, could also integrate better solutions for the sunglare issue, such as neutral density filters or heated lenses, aiming to solve glare more effectively.

Continue Reading