News
SpaceX has all the Starlink funding needed for an “operational constellation”
Upper-level wind shear has unfortunately scrubbed SpaceX’s first dedicated Starlink launch attempt, pushing Falcon 9 B1049’s third liftoff to no earlier than 10:30 pm EDT (02:30 UTC), May 16th.
A few hours prior to the launch attempt, SpaceX CEO Elon Musk hosted a conference call with members of the press and answered a number of questions about Starlink, providing the best look yet into the company’s newest endeavor. Topics included the advanced technologies on each Starlink satellite, their extremely unorthodox deployment method, SpaceX’s ultimate goals for the constellation, and even a few brief comments on funding.
Funding, secured
Perhaps the single most important thing Musk noted in the hour-long media briefing was his belief that SpaceX already has “sufficient capital to build an operational constellation.” It’s possible that that statement is heavily qualified, as Musk did not delve into greater detail, but it is still an incredible claim that could mean Starlink is far ahead of competing constellations and far more capital-efficient than OneWeb.
As previously discussed on Teslarati, in the last four years, OneWeb has raised $3.4B of funding, while SpaceX – a company primarily focused on building and launching rockets – has raised $2B, half of which is known to be dedicated to Starlink. OneWeb’s constellation (either 650 or 2650 satellites) cost estimate has grown quite a bit recently and stands at ~$5B. Assuming all $2B of the funding SpaceX has raised is dedicated to Starlink, that would translate to a per-satellite cost – including all infrastructure and launch – of $450,000 for the first phase (~4400 satellites).
Musk’s contextual definition of an “operational constellation” is probably more in line with the twelve 60-satellite launches he described as necessary to provide “significant [broadband] coverage”. It could also refer to the entire tranche of ~1600 Starlink satellites planned for the lower 550 km (340 mi) orbit this first batch of 60 is headed for, a number that Musk stated would offer “decent global coverage”. Either way, Starlink is almost certainly far more capital-efficient than OneWeb, LeoSat, Telesat, or any other satellite constellation with serious intentions.
The most obvious explanation for this – regardless of the satellites themselves – is simple: SpaceX owns its own closed-loop launch capability, including pads, integration facilities, an established cross-country transport network, and the rockets (Falcon) themselves. For any of the proposed satellite constellations to succeed, the manufacturers will almost invariably need to find build satellites so affordably that the cost of launch outweighs the cost of its payload. This ultimately means that launches alone could account for something like 50% of the cost of an entire satellite constellation.
Assuming Block 5 boosters can be reused at least 5-10 times each, the only real cost of an internal SpaceX launch is the hours worked, recovery fleet operations, and the expended upper stage and fairing – likely less than $30M altogether. As such, SpaceX may already be achieving its satellite cost targets on its first launch.
Deploying satellites “like spreading a deck of cards”
Meanwhile, Musk also offered some detail on the deeply unorthodox method SpaceX has chosen for spacecraft deployment once in orbit. Apparently, Starlink satellites will be deployed from Falcon 9’s upper stage by rotating the stage (presumably along its vertical axis) and simply letting go of the spacecraft. Musk used the analogy of spreading a deck of cards on a table, seemingly suggesting that they will either be released simultaneously (perhaps by stack) or with a stagger measured in milliseconds. This could create a fairly spectacular visual, forming an evenly-spaced spiral of satellites spreading out from the Falcon upper stage.
Above all else, Musk mainly seemed to be excited about Starlink, whether discussing the constellation’s long-term goals or the technology utilized on each individual satellite. Some miscellaneous facts and tidbits taken from the Q&A can be found below:
- Aside from Ka-band antennas and inter-satellite laser links, these 60 Starlink spacecraft are very close to the final spacecraft design.
- “It’s one of the hardest engineering projects that I’ve ever seen done.” – Elon Musk
- Starlink v0.9 is SpaceX’s heaviest payload ever by a huge margin, weighing in around 18,500 kg (40,800 lb). Crew Dragon is most likely in second-place, with a launch mass estimated to be around 13,500 kg.
- Combined, the solar arrays on the 60 Starlink spacecraft will produce up to 50% more power than the International Space Station’s football field-sized panels. This translates to ~180 kW, with each spacecraft thus producing around 3 kW total with an unusual single-panel array.
- Two solar array deployment mechanisms will be tested on this mission.
- “We see this as a way to generate revenue to develop more advanced rockets and spaceships. Starlink is a key component for establishing a presence on the moon and Mars.” – Elon Musk
- SpaceX sided with krypton-fueled Hall effect thrusters due to krypton costing 5-10x less than more traditional xenon propellant. SpaceX’s internally-designed and built thrusters will have an ISP of ~1500s.
- “[SpaceX has built] the most advanced phased array antenna[s] that I am aware of.” – Elon Musk
- These first 60 satellites alone will have a combined bandwidth of 1 terabit per second (125 GB/s), averaging around 17 Gbps per satellite.


Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla Cybercab spotted with interesting charging solution, stimulating discussion
The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.
Tesla Cybercab units are being tested publicly on roads throughout various areas of the United States, and a recent sighting of the vehicle’s charging port has certainly stimulated some discussions throughout the community.
The Cybercab is geared toward being a fully-autonomous vehicle, void of a steering wheel or pedals, only operating with the use of the Full Self-Driving suite. Everything from the driving itself to the charging to the cleaning is intended to be operated autonomously.
But a recent sighting of the vehicle has incited some speculation as to whether the vehicle might have some manual features, which would make sense, but let’s take a look:
🚨 Tesla Cybercab charging port is in the rear of the vehicle!
Here’s a great look at plugging it in!!
— TESLARATI (@Teslarati) January 29, 2026
The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.
Now, it is important to remember these are prototype vehicles, and not the final product. Additionally, Tesla has said it plans to introduce wireless induction charging in the future, but it is not currently available, so these units need to have some ability to charge.
However, there are some arguments for a charging system like this, especially as the operation of the Cybercab begins after production starts, which is scheduled for April.
Wireless for Operation, Wired for Downtime
It seems ideal to use induction charging when the Cybercab is in operation. As it is for most Tesla owners taking roadtrips, Supercharging stops are only a few minutes long for the most part.
The Cybercab would benefit from more frequent Supercharging stops in between rides while it is operating a ride-sharing program.
Tesla wireless charging patent revealed ahead of Robotaxi unveiling event
However, when the vehicle rolls back to its hub for cleaning and maintenance, standard charging, where it is plugged into a charger of some kind, seems more ideal.
In the 45-minutes that the car is being cleaned and is having maintenance, it could be fully charged and ready for another full shift of rides, grabbing a few miles of range with induction charging when it’s out and about.
Induction Charging Challenges
Induction charging is still something that presents many challenges for companies that use it for anything, including things as trivial as charging cell phones.
While it is convenient, a lot of the charge is lost during heat transfer, which is something that is common with wireless charging solutions. Even in Teslas, the wireless charging mat present in its vehicles has been a common complaint among owners, so much so that the company recently included a feature to turn them off.
Production Timing and Potential Challenges
With Tesla planning to begin Cybercab production in April, the real challenge with the induction charging is whether the company can develop an effective wireless apparatus in that short time frame.
It has been in development for several years, but solving the issue with heat and energy loss is something that is not an easy task.
In the short-term, Tesla could utilize this port for normal Supercharging operation on the Cybercab. Eventually, it could be phased out as induction charging proves to be a more effective and convenient option.
News
Tesla confirms that it finally solved its 4680 battery’s dry cathode process
The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years.
The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.
Dry cathode 4680 cells
In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.
The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”
Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.
4680 packs for Model Y
Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla:Â
“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”
The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.
Elon Musk
Tesla Giga Texas to feature massive Optimus V4 production line
This suggests that while the first Optimus line will be set up in the Fremont Factory, the real ramp of Optimus’ production will happen in Giga Texas.
Tesla will build Optimus 4 in Giga Texas, and its production line will be massive. This was, at least, as per recent comments by CEO Elon Musk on social media platform X.
Optimus 4 production
In response to a post on X which expressed surprise that Optimus will be produced in California, Musk stated that “Optimus 4 will be built in Texas at much higher volume.” This suggests that while the first Optimus line will be set up in the Fremont Factory, and while the line itself will be capable of producing 1 million humanoid robots per year, the real ramp of Optimus’ production will happen in Giga Texas.Â
This was not the first time that Elon Musk shared his plans for Optimus’ production at Gigafactory Texas. During the 2025 Annual Shareholder Meeting, he stated that Giga Texas’ Optimus line will produce 10 million units of the humanoid robot per year. He did not, however, state at the time that Giga Texas would produce Optimus V4.Â
“So we’re going to launch on the fastest production ramp of any product of any large complex manufactured product ever, starting with building a one-million-unit production line in Fremont. And that’s Line one. And then a ten million unit per year production line here,” Musk stated.Â
How big Optimus could become
During Tesla’s Q4 and FY 2025 earnings call, Musk offered additional context on the potential of Optimus. While he stated that the ramp of Optimus’ production will be deliberate at first, the humanoid robot itself will have the potential to change the world.Â
“Optimus really will be a general-purpose robot that can learn by observing human behavior. You can demonstrate a task or verbally describe a task or show it a task. Even show it a video, it will be able to do that task. It’s going to be a very capable robot. I think long-term Optimus will have a very significant impact on the US GDP.
“It will actually move the needle on US GDP significantly. In conclusion, there are still many who doubt our ambitions for creating amazing abundance. We are confident it can be done, and we are making the right moves technologically to ensure that it does. Tesla, Inc. has never been a company to shy away from solving the hardest problems,” Musk stated.


