Connect with us
A truly picturesque live view of the Iridium NEXT Mission 3 satellite deployment. Four sats are visible in an arc on the left. Starlink will be denser and smaller, but will deploy similarly. (SpaceX) A truly picturesque live view of the Iridium NEXT Mission 3 satellite deployment. Four sats are visible in an arc on the left. Starlink will be denser and smaller, but will deploy similarly. (SpaceX)

News

SpaceX has all the Starlink funding needed for an “operational constellation”

A spectacular view of Iridium NEXT satellites during orbital deployment. Starlink deployment will be even more of a spectacle. (SpaceX)

Published

on

Upper-level wind shear has unfortunately scrubbed SpaceX’s first dedicated Starlink launch attempt, pushing Falcon 9 B1049’s third liftoff to no earlier than 10:30 pm EDT (02:30 UTC), May 16th.

A few hours prior to the launch attempt, SpaceX CEO Elon Musk hosted a conference call with members of the press and answered a number of questions about Starlink, providing the best look yet into the company’s newest endeavor. Topics included the advanced technologies on each Starlink satellite, their extremely unorthodox deployment method, SpaceX’s ultimate goals for the constellation, and even a few brief comments on funding.

Funding, secured

Perhaps the single most important thing Musk noted in the hour-long media briefing was his belief that SpaceX already has “sufficient capital to build an operational constellation.” It’s possible that that statement is heavily qualified, as Musk did not delve into greater detail, but it is still an incredible claim that could mean Starlink is far ahead of competing constellations and far more capital-efficient than OneWeb.

As previously discussed on Teslarati, in the last four years, OneWeb has raised $3.4B of funding, while SpaceX – a company primarily focused on building and launching rockets – has raised $2B, half of which is known to be dedicated to Starlink. OneWeb’s constellation (either 650 or 2650 satellites) cost estimate has grown quite a bit recently and stands at ~$5B. Assuming all $2B of the funding SpaceX has raised is dedicated to Starlink, that would translate to a per-satellite cost – including all infrastructure and launch – of $450,000 for the first phase (~4400 satellites).

Musk’s contextual definition of an “operational constellation” is probably more in line with the twelve 60-satellite launches he described as necessary to provide “significant [broadband] coverage”. It could also refer to the entire tranche of ~1600 Starlink satellites planned for the lower 550 km (340 mi) orbit this first batch of 60 is headed for, a number that Musk stated would offer “decent global coverage”. Either way, Starlink is almost certainly far more capital-efficient than OneWeb, LeoSat, Telesat, or any other satellite constellation with serious intentions.

The most obvious explanation for this – regardless of the satellites themselves – is simple: SpaceX owns its own closed-loop launch capability, including pads, integration facilities, an established cross-country transport network, and the rockets (Falcon) themselves. For any of the proposed satellite constellations to succeed, the manufacturers will almost invariably need to find build satellites so affordably that the cost of launch outweighs the cost of its payload. This ultimately means that launches alone could account for something like 50% of the cost of an entire satellite constellation.

Assuming Block 5 boosters can be reused at least 5-10 times each, the only real cost of an internal SpaceX launch is the hours worked, recovery fleet operations, and the expended upper stage and fairing – likely less than $30M altogether. As such, SpaceX may already be achieving its satellite cost targets on its first launch.

Deploying satellites “like spreading a deck of cards”

Meanwhile, Musk also offered some detail on the deeply unorthodox method SpaceX has chosen for spacecraft deployment once in orbit. Apparently, Starlink satellites will be deployed from Falcon 9’s upper stage by rotating the stage (presumably along its vertical axis) and simply letting go of the spacecraft. Musk used the analogy of spreading a deck of cards on a table, seemingly suggesting that they will either be released simultaneously (perhaps by stack) or with a stagger measured in milliseconds. This could create a fairly spectacular visual, forming an evenly-spaced spiral of satellites spreading out from the Falcon upper stage.

Advertisement

Above all else, Musk mainly seemed to be excited about Starlink, whether discussing the constellation’s long-term goals or the technology utilized on each individual satellite. Some miscellaneous facts and tidbits taken from the Q&A can be found below:

  • Aside from Ka-band antennas and inter-satellite laser links, these 60 Starlink spacecraft are very close to the final spacecraft design.
  • “It’s one of the hardest engineering projects that I’ve ever seen done.” – Elon Musk
  • Starlink v0.9 is SpaceX’s heaviest payload ever by a huge margin, weighing in around 18,500 kg (40,800 lb). Crew Dragon is most likely in second-place, with a launch mass estimated to be around 13,500 kg.
  • Combined, the solar arrays on the 60 Starlink spacecraft will produce up to 50% more power than the International Space Station’s football field-sized panels. This translates to ~180 kW, with each spacecraft thus producing around 3 kW total with an unusual single-panel array.
    • Two solar array deployment mechanisms will be tested on this mission.
  • “We see this as a way to generate revenue to develop more advanced rockets and spaceships. Starlink is a key component for establishing a presence on the moon and Mars.” – Elon Musk
  • SpaceX sided with krypton-fueled Hall effect thrusters due to krypton costing 5-10x less than more traditional xenon propellant. SpaceX’s internally-designed and built thrusters will have an ISP of ~1500s.
  • “[SpaceX has built] the most advanced phased array antenna[s] that I am aware of.” – Elon Musk
  • These first 60 satellites alone will have a combined bandwidth of 1 terabit per second (125 GB/s), averaging around 17 Gbps per satellite.
The second phase of Starlink testing – 60 advanced satellites – in a single fairing. (SpaceX)
SpaceX's first two Starlink prototype satellites deploy from Falcon 9, February 2018. (SpaceX)
Starlink v0.9 satellite deployment will apparently look nothing like the traditional method used with Tintin A/B. (SpaceX)

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Robotaxi’s biggest rival sends latest statement with big expansion

The new expanded geofence now covers a broader region of Austin and its metropolitan areas, extended south to Manchaca and north beyond US-183.

Published

on

Credit: @AdanGuajardo/X

Tesla Robotaxi’s biggest rival sent its latest statement earlier this month by making a big expansion to its geofence, pushing the limits up by over 50 percent and nearing Tesla’s size.

Waymo announced earlier this month that it was expanding its geofence in Austin by slightly over 50 percent, now servicing an area of 140 square miles, over the previous 90 square miles that it has been operating in since July 2025.

Tesla CEO Elon Musk shades Waymo: ‘Never really had a chance’

The new expanded geofence now covers a broader region of Austin and its metropolitan areas, extended south to Manchaca and north beyond US-183.

These rides are fully driverless, which sets them apart from Tesla slightly. Tesla operates its Robotaxi program in Austin with a Safety Monitor in the passenger’s seat on local roads and in the driver’s seat for highway routes.

It has also tested fully driverless Robotaxi services internally in recent weeks, hoping to remove Safety Monitors in the near future, after hoping to do so by the end of 2025.

Although Waymo’s geofence has expanded considerably, it still falls short of Tesla’s by roughly 31 square miles, as the company’s expansion back in late 2025 put it up to roughly 171 square miles.

There are several differences between the two operations apart from the size of the geofence and the fact that Waymo is able to operate autonomously.

Waymo emphasizes mature, fully autonomous operations in a denser but smaller area, while Tesla focuses on more extensive coverage and fleet scaling potential, especially with the potential release of Cybercab and a recently reached milestone of 200 Robotaxis in its fleet across Austin and the Bay Area.

However, the two companies are striving to achieve the same goal, which is expanding the availability of driverless ride-sharing options across the United States, starting with large cities like Austin and the San Francisco Bay Area. Waymo also operates in other cities, like Las Vegas, Los Angeles, Orlando, Phoenix, and Atlanta, among others.

Tesla is working to expand to more cities as well, and is hoping to launch in Miami, Houston, Phoenix, Las Vegas, and Dallas.

Continue Reading

Elon Musk

Tesla automotive will be forgotten, but not in a bad way: investor

It’s no secret that Tesla’s automotive division has been its shining star for some time. For years, analysts and investors have focused on the next big project or vehicle release, quarterly delivery frames, and progress in self-driving cars. These have been the big categories of focus, but that will all change soon.

Published

on

(Credit: Tesla)

Entrepreneur and Angel investor Jason Calacanis believes that Tesla will one day be only a shade of how it is recognized now, as its automotive side will essentially be forgotten, but not in a bad way.

It’s no secret that Tesla’s automotive division has been its shining star for some time. For years, analysts and investors have focused on the next big project or vehicle release, quarterly delivery frames, and progress in self-driving cars. These have been the big categories of focus, but that will all change soon.

I subscribed to Tesla Full Self-Driving after four free months: here’s why

Eventually, and even now, the focus has been on real-world AI and Robotics, both through the Full Self-Driving and autonomy projects that Tesla has been working on, as well as the Optimus program, which is what Calacanis believes will be the big disruptor of the company’s automotive division.

On the All-In podcast, Calcanis revealed he had visited Tesla’s Optimus lab earlier this month, where he was able to review the Optimus Gen 3 prototype and watch teams of engineers chip away at developing what CEO Elon Musk has said will be the big product that will drive the company even further into the next few decades.

Calacanis said:

“Nobody will remember that Tesla ever made a car. They will only remember the Optimus.”

He added that Musk “is going to make a billion of those.”

Musk has stated this point himself, too. He at one point said that he predicted that “Optimus will be the biggest product of all-time by far. Nothing will even be close. I think it’ll be 10 times bigger than the next biggest product ever made.”

He has also indicated that he believes 80 percent of Tesla’s value will be Optimus.

Optimus aims to totally revolutionize the way people live, and Musk has said that working will be optional due to its presence. Tesla’s hopes for Optimus truly show a crystal clear image of the future and what could be possible with humanoid robots and AI.

Continue Reading

News

Tesla Robotaxi fleet reaches new milestone that should expel common complaint

There have been many complaints in the eight months that the Robotaxi program has been active about ride availability, with many stating that they have been confronted with excessive wait times for a ride, as the fleet was very small at the beginning of its operation.

Published

on

Credit: Tesla

Tesla Robotaxi is active in both the Bay Area of California and Austin, Texas, and the fleet has reached a new milestone that should expel a common complaint: lack of availability.

It has now been confirmed by Robotaxi Tracker that the fleet of Tesla’s ride-sharing vehicles has reached 200, with 158 of those being available in the Bay Area and 42 more in Austin. Despite the program first launching in Texas, the company has more vehicles available in California.

The California area of operation is much larger than it is in Texas, and the vehicle fleet is larger because Tesla operates it differently; Safety Monitors sit in the driver’s seat in California while FSD navigates. In Texas, Safety Monitors sit in the passenger’s seat, but will switch seats when routing takes them on the highway.

Tesla has also started testing rides without any Safety Monitors internally.

Tesla Robotaxi goes driverless as Musk confirms Safety Monitor removal testing

This new milestone confronts a common complaint of Robotaxi riders in Austin and the Bay, which is vehicle availability.

There have been many complaints in the eight months that the Robotaxi program has been active about ride availability, with many stating that they have been confronted with excessive wait times for a ride, as the fleet was very small at the beginning of its operation.

With that being said, there have been some who have said wait times have improved significantly, especially in the Bay, where the fleet is much larger.

Tesla’s approach to the Robotaxi fleet has been to prioritize safety while also gathering its footing as a ride-hailing platform.

Of course, there have been and still will be growing pains, but overall, things have gone smoothly, as there have been no major incidents that would derail the company’s ability to continue developing an effective mode of transportation for people in various cities in the U.S.

Tesla plans to expand Robotaxi to more cities this year, including Miami, Las Vegas, and Houston, among several others.

Continue Reading