Connect with us
A truly picturesque live view of the Iridium NEXT Mission 3 satellite deployment. Four sats are visible in an arc on the left. Starlink will be denser and smaller, but will deploy similarly. (SpaceX) A truly picturesque live view of the Iridium NEXT Mission 3 satellite deployment. Four sats are visible in an arc on the left. Starlink will be denser and smaller, but will deploy similarly. (SpaceX)

News

SpaceX has all the Starlink funding needed for an “operational constellation”

A spectacular view of Iridium NEXT satellites during orbital deployment. Starlink deployment will be even more of a spectacle. (SpaceX)

Published

on

Upper-level wind shear has unfortunately scrubbed SpaceX’s first dedicated Starlink launch attempt, pushing Falcon 9 B1049’s third liftoff to no earlier than 10:30 pm EDT (02:30 UTC), May 16th.

A few hours prior to the launch attempt, SpaceX CEO Elon Musk hosted a conference call with members of the press and answered a number of questions about Starlink, providing the best look yet into the company’s newest endeavor. Topics included the advanced technologies on each Starlink satellite, their extremely unorthodox deployment method, SpaceX’s ultimate goals for the constellation, and even a few brief comments on funding.

Funding, secured

Perhaps the single most important thing Musk noted in the hour-long media briefing was his belief that SpaceX already has “sufficient capital to build an operational constellation.” It’s possible that that statement is heavily qualified, as Musk did not delve into greater detail, but it is still an incredible claim that could mean Starlink is far ahead of competing constellations and far more capital-efficient than OneWeb.

As previously discussed on Teslarati, in the last four years, OneWeb has raised $3.4B of funding, while SpaceX – a company primarily focused on building and launching rockets – has raised $2B, half of which is known to be dedicated to Starlink. OneWeb’s constellation (either 650 or 2650 satellites) cost estimate has grown quite a bit recently and stands at ~$5B. Assuming all $2B of the funding SpaceX has raised is dedicated to Starlink, that would translate to a per-satellite cost – including all infrastructure and launch – of $450,000 for the first phase (~4400 satellites).

Musk’s contextual definition of an “operational constellation” is probably more in line with the twelve 60-satellite launches he described as necessary to provide “significant [broadband] coverage”. It could also refer to the entire tranche of ~1600 Starlink satellites planned for the lower 550 km (340 mi) orbit this first batch of 60 is headed for, a number that Musk stated would offer “decent global coverage”. Either way, Starlink is almost certainly far more capital-efficient than OneWeb, LeoSat, Telesat, or any other satellite constellation with serious intentions.

The most obvious explanation for this – regardless of the satellites themselves – is simple: SpaceX owns its own closed-loop launch capability, including pads, integration facilities, an established cross-country transport network, and the rockets (Falcon) themselves. For any of the proposed satellite constellations to succeed, the manufacturers will almost invariably need to find build satellites so affordably that the cost of launch outweighs the cost of its payload. This ultimately means that launches alone could account for something like 50% of the cost of an entire satellite constellation.

Assuming Block 5 boosters can be reused at least 5-10 times each, the only real cost of an internal SpaceX launch is the hours worked, recovery fleet operations, and the expended upper stage and fairing – likely less than $30M altogether. As such, SpaceX may already be achieving its satellite cost targets on its first launch.

Deploying satellites “like spreading a deck of cards”

Meanwhile, Musk also offered some detail on the deeply unorthodox method SpaceX has chosen for spacecraft deployment once in orbit. Apparently, Starlink satellites will be deployed from Falcon 9’s upper stage by rotating the stage (presumably along its vertical axis) and simply letting go of the spacecraft. Musk used the analogy of spreading a deck of cards on a table, seemingly suggesting that they will either be released simultaneously (perhaps by stack) or with a stagger measured in milliseconds. This could create a fairly spectacular visual, forming an evenly-spaced spiral of satellites spreading out from the Falcon upper stage.

Advertisement
-->

Above all else, Musk mainly seemed to be excited about Starlink, whether discussing the constellation’s long-term goals or the technology utilized on each individual satellite. Some miscellaneous facts and tidbits taken from the Q&A can be found below:

  • Aside from Ka-band antennas and inter-satellite laser links, these 60 Starlink spacecraft are very close to the final spacecraft design.
  • “It’s one of the hardest engineering projects that I’ve ever seen done.” – Elon Musk
  • Starlink v0.9 is SpaceX’s heaviest payload ever by a huge margin, weighing in around 18,500 kg (40,800 lb). Crew Dragon is most likely in second-place, with a launch mass estimated to be around 13,500 kg.
  • Combined, the solar arrays on the 60 Starlink spacecraft will produce up to 50% more power than the International Space Station’s football field-sized panels. This translates to ~180 kW, with each spacecraft thus producing around 3 kW total with an unusual single-panel array.
    • Two solar array deployment mechanisms will be tested on this mission.
  • “We see this as a way to generate revenue to develop more advanced rockets and spaceships. Starlink is a key component for establishing a presence on the moon and Mars.” – Elon Musk
  • SpaceX sided with krypton-fueled Hall effect thrusters due to krypton costing 5-10x less than more traditional xenon propellant. SpaceX’s internally-designed and built thrusters will have an ISP of ~1500s.
  • “[SpaceX has built] the most advanced phased array antenna[s] that I am aware of.” – Elon Musk
  • These first 60 satellites alone will have a combined bandwidth of 1 terabit per second (125 GB/s), averaging around 17 Gbps per satellite.
The second phase of Starlink testing – 60 advanced satellites – in a single fairing. (SpaceX)
SpaceX's first two Starlink prototype satellites deploy from Falcon 9, February 2018. (SpaceX)
Starlink v0.9 satellite deployment will apparently look nothing like the traditional method used with Tintin A/B. (SpaceX)

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Elon Musk and Tesla AI Director share insights after empty driver seat Robotaxi rides

The executives’ unoccupied tests hint at the rapid progress of Tesla’s unsupervised Robotaxi efforts.

Published

on

Ashok Elluswamy

Tesla CEO Elon Musk and AI Director Ashok Elluswamy celebrated Christmas Eve by sharing personal experiences with Robotaxi vehicles that had no safety monitor or occupant in the driver’s seat. Musk described the system’s “perfect driving” around Austin, while Elluswamy posted video from the back seat, calling it “an amazing experience.”

The executives’ unoccupied tests hint at the rapid progress of Tesla’s unsupervised Robotaxi efforts.

Elon and Ashok’s firsthand Robotaxi insights

Prior to Musk and the Tesla AI Director’s posts, sightings of unmanned Teslas navigating public roads were widely shared on social media. One such vehicle was spotted in Austin, Texas, which Elon Musk acknowleged by stating that “Testing is underway with no occupants in the car.” 

Based on his Christmas Eve post, Musk seemed to have tested an unmanned Tesla himself. “A Tesla with no safety monitor in the car and me sitting in the passenger seat took me all around Austin on Sunday with perfect driving,” Musk wrote in his post.

Elluswamy responded with a 2-minute video showing himself in the rear of an unmanned Tesla. The video featured the vehicle’s empty front seats, as well as its smooth handling through real-world traffic. He captioned his video with the words, “It’s an amazing experience!”

Advertisement
-->

Towards Unsupervised operations

During an xAI Hackathon earlier this month, Elon Musk mentioned that Tesla owed be removing Safety Monitors from its Robotaxis in Austin in just three weeks. “Unsupervised is pretty much solved at this point. So there will be Tesla Robotaxis operating in Austin with no one in them. Not even anyone in the passenger seat in about three weeks,” he said. Musk echoed similar estimates at the 2025 Annual Shareholder Meeting and the Q3 2025 earnings call.

Considering the insights that were posted Musk and Elluswamy, it does appear that Tesla is working hard towards operating its Robotaxis with no safety monitors. This is quite impressive considering that the service was launched just earlier this year.

Continue Reading

Elon Musk

Starlink passes 9 million active customers just weeks after hitting 8 million

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

Published

on

Credit: Starlink/X

SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark. 

The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.

9 million customers

In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day. 

“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote. 

That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.

Advertisement
-->

Starlink’s momentum

Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.

Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future. 

Continue Reading

News

NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.

Published

on

Credit: Grok Imagine

NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”

After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”

Jim Fan’s hands-on FSD v14 impressions

Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14

“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X. 

Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”

Advertisement
-->

The Physical Turing Test

The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning. 

This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.

Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.

Continue Reading