Connect with us

News

SpaceX’s first orbital-class Starship ‘tank farm’ is almost finished

Published

on

Roughly six months after the process began, SpaceX has installed the seventh and final custom-built propellant storage tank at Starbase’s first orbital-class Starship launch site.

Built out of the same factory and parts as the steel tanks that make up most of the two-stage Starship rocket’s structure, SpaceX completed the first two of those ‘ground support equipment (GSE)’ tanks in April and wasted no time installing both at Starbase’s orbital launch site (OLS). However, after a strong start, GSE tank work seemingly halted for several months and it wasn’t until August that SpaceX first enclosed one of the then three installed tanks with a sleeve designed to insulate their cryogenic contents. Since then, progress has picked back up and SpaceX has built and installed another three (for a total of six) storage tanks over the last two months.

That work effectively culminated on September 7th with the transport of the farm’s seventh and final GSE tank from build site to launch pad.

Unintuitively known as GSE-8 after SpaceX chose to scrap one of the original seven planned tanks earlier this year, the company wasted no time installing it shortly after its two-mile trip down the highway. GSE-8 is the second of two liquid methane (LCH4) tanks now installed at the orbital launch site and joins another three liquid oxygen (LOx) and two liquid nitrogen (LN2) tanks for a total of seven.

Combined, the OLS tank farm should be able to store more than 2400 tons of LCH4 and 4000 tons of LOx, as well as 2600+ tons of LN2 to be used for ‘subcooling’ (and thus densifying) that propellant well below its boiling point. Ultimately, that means that despite the massive scale of Starbase’s first orbital-class tank farm, it will still only hold enough propellant for a single orbital Starship launch and have to be almost fully restocked after each flight.

Advertisement
-->

Given the logistical nightmare of arranging something like 100+ tanker trucks for each tank farm ‘refill,’ a process that could easily take a week or more on its own, it should come as no surprise that SpaceX is also building a dedicated liquid oxygen and nitrogen plant adjacent to its Starbase factory. On top of liquid natural gas (LNG) refinery and tenuous plans to potentially tap local natural gas wells, SpaceX is clearly well aware of the logistical challenges of regular Starship launches.

While there are no clear signs of the inevitable permitting and environmental reviews it would require, it’s likely that SpaceX will eventually create a brief above or below-ground cryogenic pipeline connecting its propellant factory to Starbase’s orbital launch site(s). If or when implemented, that would allow SpaceX to resupply its two planned orbital tank farms with minimal effort or human intervention beyond the process of producing the propellant.

An October 5th panorama of Starbase’s orbital tank farm and plumbing. (NASASpaceflight – bocachicagal)
With GSE8 installed, SpaceX is now just two ‘cryoshells’ away from completing the most important elements of Starship’s first orbital-class tank farm. (NASASpaceflight – bocachicagal)

For the time being, SpaceX will likely rely on a slow but simple parade of tanker trucks to gradually fill its first orbital tank farm. Before even that process is possible, though, SpaceX will need to finish plumbing GSE-8 and several other tanks, install the last two insulative ‘cryoshells,’ and finally fill the annuli between all seven tanks and their shells with an insulative foam-like material known as perlite. Dozens of bags of perlite and several kilns (used to expand the material into low density insulation) are already distributed around the orbital tank farm.

Meanwhile, SpaceX also continues to slowly fill the first two completed OLS tanks (nominally meant to hold LOx) with liquid nitrogen, serving both to test the tanks and pad plumbing and to clean their interiors for liquid oxygen service. Ultimately, while a good amount of work remains, Starbase’s first orbital-class tank farm could be fully ready to support its first Super Heavy booster proof and static fire test campaign just a few weeks from now.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla FSD fleet is nearing 7 billion total miles, including 2.5 billion city miles

As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles.

Published

on

Tesla’s Full Self-Driving (Supervised) fleet is closing in on almost 7 billion total miles driven, as per data posted by the company on its official FSD webpage. 

These figures hint at the massive scale of data fueling Tesla’s rapid FSD improvements, which have been quite notable as of late.

FSD mileage milestones

As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles. Tesla owner and avid FSD tester Whole Mars Catalog also shared a screenshot indicating that from the nearly 7 billion miles traveled by the FSD fleet, more than 2.5 billion miles were driven inside cities. 

City miles are particularly valuable for complex urban scenarios like unprotected turns, pedestrian interactions, and traffic lights. This is also the difference-maker for FSD, as only complex solutions, such as Waymo’s self-driving taxis, operate similarly on inner-city streets. And even then, incidents such as the San Francisco blackouts have proven challenging for sensor-rich vehicles like Waymos. 

Tesla’s data edge

Tesla has a number of advantages in the autonomous vehicle sector, one of which is the size of its fleet and the number of vehicles training FSD on real-world roads. Tesla’s nearly 7 billion FSD miles then allow the company to roll out updates that make its vehicles behave like they are being driven by experienced drivers, even if they are operating on their own. 

Advertisement
-->

So notable are Tesla’s improvements to FSD that NVIDIA Director of Robotics Jim Fan, after experiencing FSD v14, noted that the system is the first AI that passes what he described as a “Physical Turing Test.” 

“Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies,” Fan wrote in a post on X. 

Continue Reading

News

Tesla starts showing how FSD will change lives in Europe

Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.

Published

on

Credit: Grok Imagine

Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options. 

Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.

Officials see real impact on rural residents

Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”

The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.

What the Ministry for Economic Affairs and Transport says

Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents. 

Advertisement
-->

“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe. 

“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post

Continue Reading

News

Tesla China quietly posts Robotaxi-related job listing

Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.

Published

on

Credit: Tesla

Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China. 

As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.

Robotaxi-specific role

The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi. 

Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.

China Robotaxi launch

China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.

Advertisement
-->

This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees. 

Continue Reading