Connect with us

News

SpaceX’s first orbital-class Starship ‘tank farm’ is almost finished

Published

on

Roughly six months after the process began, SpaceX has installed the seventh and final custom-built propellant storage tank at Starbase’s first orbital-class Starship launch site.

Built out of the same factory and parts as the steel tanks that make up most of the two-stage Starship rocket’s structure, SpaceX completed the first two of those ‘ground support equipment (GSE)’ tanks in April and wasted no time installing both at Starbase’s orbital launch site (OLS). However, after a strong start, GSE tank work seemingly halted for several months and it wasn’t until August that SpaceX first enclosed one of the then three installed tanks with a sleeve designed to insulate their cryogenic contents. Since then, progress has picked back up and SpaceX has built and installed another three (for a total of six) storage tanks over the last two months.

That work effectively culminated on September 7th with the transport of the farm’s seventh and final GSE tank from build site to launch pad.

Unintuitively known as GSE-8 after SpaceX chose to scrap one of the original seven planned tanks earlier this year, the company wasted no time installing it shortly after its two-mile trip down the highway. GSE-8 is the second of two liquid methane (LCH4) tanks now installed at the orbital launch site and joins another three liquid oxygen (LOx) and two liquid nitrogen (LN2) tanks for a total of seven.

Combined, the OLS tank farm should be able to store more than 2400 tons of LCH4 and 4000 tons of LOx, as well as 2600+ tons of LN2 to be used for ‘subcooling’ (and thus densifying) that propellant well below its boiling point. Ultimately, that means that despite the massive scale of Starbase’s first orbital-class tank farm, it will still only hold enough propellant for a single orbital Starship launch and have to be almost fully restocked after each flight.

Given the logistical nightmare of arranging something like 100+ tanker trucks for each tank farm ‘refill,’ a process that could easily take a week or more on its own, it should come as no surprise that SpaceX is also building a dedicated liquid oxygen and nitrogen plant adjacent to its Starbase factory. On top of liquid natural gas (LNG) refinery and tenuous plans to potentially tap local natural gas wells, SpaceX is clearly well aware of the logistical challenges of regular Starship launches.

While there are no clear signs of the inevitable permitting and environmental reviews it would require, it’s likely that SpaceX will eventually create a brief above or below-ground cryogenic pipeline connecting its propellant factory to Starbase’s orbital launch site(s). If or when implemented, that would allow SpaceX to resupply its two planned orbital tank farms with minimal effort or human intervention beyond the process of producing the propellant.

An October 5th panorama of Starbase’s orbital tank farm and plumbing. (NASASpaceflight – bocachicagal)
With GSE8 installed, SpaceX is now just two ‘cryoshells’ away from completing the most important elements of Starship’s first orbital-class tank farm. (NASASpaceflight – bocachicagal)

For the time being, SpaceX will likely rely on a slow but simple parade of tanker trucks to gradually fill its first orbital tank farm. Before even that process is possible, though, SpaceX will need to finish plumbing GSE-8 and several other tanks, install the last two insulative ‘cryoshells,’ and finally fill the annuli between all seven tanks and their shells with an insulative foam-like material known as perlite. Dozens of bags of perlite and several kilns (used to expand the material into low density insulation) are already distributed around the orbital tank farm.

Meanwhile, SpaceX also continues to slowly fill the first two completed OLS tanks (nominally meant to hold LOx) with liquid nitrogen, serving both to test the tanks and pad plumbing and to clean their interiors for liquid oxygen service. Ultimately, while a good amount of work remains, Starbase’s first orbital-class tank farm could be fully ready to support its first Super Heavy booster proof and static fire test campaign just a few weeks from now.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Robotaxi ride-hailing without a Safety Monitor proves to be difficult

Published

on

Credit: Grok Imagine

Tesla Robotaxi ride-hailing without a Safety Monitor is proving to be a difficult task, according to some riders who made the journey to Austin to attempt to ride in one of its vehicles that has zero supervision.

Last week, Tesla officially removed Safety Monitors from some — not all — of its Robotaxi vehicles in Austin, Texas, answering skeptics who said the vehicles still needed supervision to operate safely and efficiently.

BREAKING: Tesla launches public Robotaxi rides in Austin with no Safety Monitor

Tesla aimed to remove Safety Monitors before the end of 2025, and it did, but only to company employees. It made the move last week to open the rides to the public, just a couple of weeks late to its original goal, but the accomplishment was impressive, nonetheless.

However, the small number of Robotaxis that are operating without Safety Monitors has proven difficult to hail for a ride. David Moss, who has gained notoriety recently as the person who has traveled over 10,000 miles in his Tesla on Full Self-Driving v14 without any interventions, made it to Austin last week.

He has tried to get a ride in a Safety Monitor-less Robotaxi for the better part of four days, and after 38 attempts, he still has yet to grab one:

Tesla said last week that it was rolling out a controlled test of the Safety Monitor-less Robotaxis. Ashok Elluswamy, who heads the AI program at Tesla, confirmed that the company was “starting with a few unsupervised vehicles mixed in with the broader Robotaxi fleet with Safety Monitors,” and that “the ratio will increase over time.”

This is a good strategy that prioritizes safety and keeps the company’s controlled rollout at the forefront of the Robotaxi rollout.

However, it will be interesting to see how quickly the company can scale these completely monitor-less rides. It has proven to be extremely difficult to get one, but that is understandable considering only a handful of the cars in the entire Austin fleet are operating with no supervision within the vehicle.

Continue Reading

News

Tesla gives its biggest hint that Full Self-Driving in Europe is imminent

Published

on

Credit: BLKMDL3 | X

Tesla has given its biggest hint that Full Self-Driving in Europe is imminent, as a new feature seems to show that the company is preparing for frequent border crossings.

Tesla owner and influencer BLKMDL3, also known as Zack, recently took his Tesla to the border of California and Mexico at Tijuana, and at the international crossing, Full Self-Driving showed an interesting message: “Upcoming country border — FSD (Supervised) will become unavailable.”

Due to regulatory approvals, once a Tesla operating on Full Self-Driving enters a new country, it is required to comply with the laws and regulations that are applicable to that territory. Even if legal, it seems Tesla will shut off FSD temporarily, confirming it is in a location where operation is approved.

This is something that will be extremely important in Europe, as crossing borders there is like crossing states in the U.S.; it’s pretty frequent compared to life in America, Canada, and Mexico.

Tesla has been working to get FSD approved in Europe for several years, and it has been getting close to being able to offer it to owners on the continent. However, it is still working through a lot of the red tape that is necessary for European regulators to approve use of the system on their continent.

This feature seems to be one that would be extremely useful in Europe, considering the fact that crossing borders into other countries is much more frequent than here in the U.S., and would cater to an area where approvals would differ.

Tesla has been testing FSD in Spain, France, England, and other European countries, and plans to continue expanding this effort. European owners have been fighting for a very long time to utilize the functionality, but the red tape has been the biggest bottleneck in the process.

Tesla Europe builds momentum with expanding FSD demos and regional launches

Tesla operates Full Self-Driving in the United States, China, Canada, Mexico, Puerto Rico, Australia, New Zealand, and South Korea.

Continue Reading

Elon Musk

SpaceX Starship V3 gets launch date update from Elon Musk

The first flight of Starship Version 3 and its new Raptor V3 engines could happen as early as March.

Published

on

Credit: SpaceX/X

Elon Musk has announced that SpaceX’s next Starship launch, Flight 12, is expected in about six weeks. This suggests that the first flight of Starship Version 3 and its new Raptor V3 engines could happen as early as March.

In a post on X, Elon Musk stated that the next Starship launch is in six weeks. He accompanied his announcement with a photo that seemed to have been taken when Starship’s upper stage was just about to separate from the Super Heavy Booster. Musk did not state whether SpaceX will attempt to catch the Super Heavy Booster during the upcoming flight.

The upcoming flight will mark the debut of Starship V3. The upgraded design includes the new Raptor V3 engine, which is expected to have nearly twice the thrust of the original Raptor 1, at a fraction of the cost and with significantly reduced weight. The Starship V3 platform is also expected to be optimized for manufacturability. 

The Starship V3 Flight 12 launch timeline comes as SpaceX pursues an aggressive development cadence for the fully reusable launch system. Previous iterations of Starship have racked up a mixed but notable string of test flights, including multiple integrated flight tests in 2025.

Interestingly enough, SpaceX has teased an aggressive timeframe for Starship V3’s first flight. Way back in late November, SpaceX noted on X that it will be aiming to launch Starship V3’s maiden flight in the first quarter of 2026. This was despite setbacks like a structural anomaly on the first V3 booster during ground testing.

“Starship’s twelfth flight test remains targeted for the first quarter of 2026,” the company wrote in its post on X. 

Continue Reading