Connect with us

News

SpaceX CEO Elon Musk posts uncut Raptor, drone videos of Starhopper’s flight test debut

Just a few hours after Starhopper completed its first untethered flight test, SpaceX CEO Elon Musk posted two videos showing the rocket's flight debut from liftoff to landing. (SpaceX/Elon Musk/Teslarati)

Published

on

Some two hours after Starhopper’s inaugural untethered flight, SpaceX CEO Elon Musk took to Twitter to post an uncut video showing the ungainly rocket’s launch and landing from the perspective of both a drone and Starhopper’s lone Raptor engine.

As noted by commenters, Starhopper’s first flight also marks perhaps an even more fascinating milestone: it’s technically the first launch ever of a full-flow staged-combustion (FFSC) rocket engine. Whether or not the development hell Raptor required is or was worth it to SpaceX, the company has become the first and only entity on Earth to develop and fly a FFSC engine, beating out the national space agencies of both the United States and Soviet Union, both of which built – but never flew – prototypes.

Instead of inexplicably shelving a mature prototype development and test program, SpaceX iterated through several subscale Raptor prototypes, test-fired the engines for more than 1200 seconds total, used that data to design and build full-scale Raptors, and finally sped into a hardware-rich test campaign with six (soon to be seven) new engines. After SpaceX settled on a full-flow staged-combustion cycle and methane/oxygen (methalox) propellant, Raptor conducted its first full-scale tests all the way back in 2014, performing preburner flow and ignition tests at NASA’s Stennis Space Center.

Two years and many additional subcomponent tests later, SpaceX successfully performed the inaugural static fire test of its first completed subscale Raptor, a huge milestone for any rocket engine. In the 12 months following its first static fire (September 2016), SpaceX performed dozens of static fire tests with several subscale engines, putting the new propulsion system through >1200 seconds of combined testing.

A year after that, SpaceX was still testing subscale engines but the first full-scale Raptor engine was just a few months away from completing assembly in Hawthorne and heading to McGregor to kick off full-scale static fire testing. Indeed, four months after CEO Elon Musk’s September 2018 update, Raptor serial number 01 (SN01) shipped to Texas in late January and successfully ignited for the first time on February 3rd. SpaceX’s finalized full-scale Raptor engine is designed to produce more than 2000 kN (450,000 lbf, 200 tons) of thrust at full-throttle.

Since that inaugural ignition, SpaceX’s propulsion team – perhaps to their detriment, under orders from Musk – pushed SN01 and several of its successors to their limits as quickly as possible, resulting in severe, irreparable damage in several cases. On the other hand, the no-holds-barred, ‘hardware-rich’ (i.e. destructive) test program has allowed SpaceX to relatively quickly solve several major bugs that prevented the engine from passing longer test fires.

Raptor SN05 was originally expected to support Starhopper’s first flight(s) but had to be passed up after suffering damage in one of its final June 2019 acceptance tests. Raptor SN06 became the first engine – likely thanks to tweaks afforded by data gathered from its failed brethren – to pass all of those acceptance tests, leading to its eventual installation on Starhopper in early July.

Raptor’s impressive development culminated on July 25th with the engine’s first untethered flight while attached to Starhopper, a 9m-diameter (30 ft) low-fidelity prototype that is more or less a mobile test stand for the next-generation SpaceX engine. Raptor is now the only FFSC engine in history that has powered a flight-capable vehicle’s launch and landing, even if said flight featured an apogee of just 20-30 meters (65-100 ft).

Advertisement

“In full-flow staged combustion (FFSC), even more complexity is added as all propellant that touches the engine must necessarily end up traveling through the main combustion chamber to eke every last ounce of thrust out of the finite propellant a rocket lifts off with. As such, FFSC engines can be about as efficient as the laws of physics allow any given chemical rocket engine to be, at the cost of exceptional complexity and brutally difficult development.

SpaceX delays Starhopper’s first flight a few days despite Raptor preburner test success

For more on what exactly makes full-flow staged-combustion engines uniquely capable and challenging to develop, the subject has been covered at length in past Teslarati articles.

According to Musk, the next major challenge facing Starhopper and (presumably) Raptor SN06 is far more ambitious 200-meter (650 ft) hop and flight test that could happen as soon as the first half of August.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Cybertruck

Tesla announces delivery timeline for Cybertruck in new market

“Coming soon! Estimated deliveries in Q1 for UAE.”

Published

on

Credit: Tesla

Tesla announced its delivery timeline for the Cybertruck as it heads to a new market.

Tesla Cybertruck deliveries started in the United States and Canada back in late 2023. However, the company has been looking to expand the all-electric pickup to new markets, including the Middle East, for which it opened up orders for earlier this year.

Initially, Tesla planned to launch deliveries late this year, but there has been a slight adjustment to the timeline, and the company now anticipates the pickup to make its way to the first adopters in the United Arab Emirates in Q1 2026.

This was confirmed by the Tesla Cybertruck program’s lead engineer, Wes Morrill:

Tesla first opened orders for the Cybertruck in the Middle East in mid-September of this year. It will be priced at AED 404,900 for the Dual Motor All-Wheel-Drive ($110,254) and AED 454,900 ($123,869) for the Cyberbeast trim.

The Cybertruck has been a highly anticipated vehicle in many parts of the world, but its ability to be sold in various regions is what is truly causing delays in the company’s efforts to bring the electric pickup worldwide.

Tesla confirms Cybertruck will make its way out of North America this year

In Europe, various agencies have challenged the design of the Cybertruck, arguing that it is unsafe for pedestrians due to its sharp edges and “boxy” design.

Agencies in the EU have said the vehicle’s “blade-like” protrusions are a violation of rules that ban sharp exterior edges that could cause severe injuries.

In Asia, Tesla will likely have to develop a smaller, more compact version of the vehicle as it does not align with local standards for urban environments. However, Tesla filed for energy consumption approval for the Cybertruck in December 2024, but there has been no real update on the status of this particular inquiry.

Overall, these issues highlight a real bottleneck in futuristic vehicle designs and the out-of-date regulations that inhibit the vehicle from becoming more widely available. Of course, Tesla has teased some other designs, including a more traditional pickup or even a compact Cybertruck build, but the company is not one to shy away from its commitments.

Nevertheless, the Cybertruck will appear in the Middle East for the first time in 2026.

Continue Reading

Elon Musk

Tesla teases new AI5 chip that will revolutionize self-driving

Published

on

Credit: Tesla

Elon Musk revealed new information on Tesla’s AI5, previously known as Hardware 5, chip, for self-driving, which will be manufactured by both Samsung and TSMC.

The AI5 chip is Tesla’s next-generation hardware chip for its self-driving program, Optimus humanoid robots, and other AI-driven features in both vehicles and other applications. It will be the successor to the current AI4, previously known as Hardware 4, which is currently utilized in Tesla’s newest vehicles.

Elon Musk reveals Tesla’s HW5 release date, and that it won’t be called HW5

AI5 is specially optimized for Tesla use, as it will work alongside the company’s Neural Networks to focus on real-time inference to make safe and logical decisions during operation. It was first teased by Tesla in mid-2024 as Musk called it “an amazing design” and “an immense jump” from the current AI4 chip.

It will be roughly 4o times faster, have 8 times the raw compute, 9 times the memory capacity, 5 times the memory bandwidth, and 3 times the efficiency per watt.

It will be manufactured by both TSMC and Samsung at their Arizona and Texas fab locations, respectively.

Here’s what Musk revealed about the chip yesterday:

Different Versions

Samsung and TSMC will make slightly different versions of the AI5 chip, “simply because they translate designs to physical form differently.” However, Musk said the goal is that its AI software would work identically.

This was a real concern for some who are familiar with chip manufacturing, as Apple’s A9 “Chipgate” saga seemed to be echoing through Tesla.

Back in 2015, it was found that Apple’s A9 chips had different performances based on who manufactured them. TSMC and Samsung were both building the chips, but it was found that Samsung’s chips had shorter battery life than TSMC-fabricated versions.

Apple concluded that the variance was about 2-3 percent. However, Tesla will look to avoid this altogether.

Release and Implementation into Vehicles

Musk said that some samples will be available next year, and “maybe a small number of units” would equip the chip as well. However, high-volume production is only possible in 2027.

This means, based on Tesla’s own timeline for Cybercab production in Q2 2026, early iterations of the vehicle would rely on AI4. Many believe AI4 can be utilized for solved self-driving, but the power of subsequent versions, including AI5 and beyond, will be more capable.

AI6 and Beyond

AI6 will utilize the same fabs as AI5, but there would be a theoretical boost in performance by two times with this version.

AI6 could enter volume production by mid-2028. However, AI7, which Musk only briefly mentioned, “will need different fabs, as it is more adventurous.”

Continue Reading

News

Tesla makes a splash at China’s Import Expo with Cybercab and Optimus

It appears that Elon Musk’s vision is something that still resonates with people.

Published

on

Image: Tesla China
Image: Tesla China

Tesla’s fully autonomous Cybercab made its first appearance in the Asia-Pacific region at the 8th China International Import Expo (CIIE) in Shanghai on November 5, becoming the centerpiece of an event that drew 12 of the world’s leading automakers. 

The new model offers a glimpse into Tesla’s driverless ride-hailing future, and based on the reception of the event’s attendees, it appears that Elon Musk’s vision is something that still resonates with people.

Tesla showcases its driverless vision with the Cybercab

At this year’s expo, themed “Mobility, Infinite Possibilities,” Tesla’s futuristic two-seat Cybercab stood out as a showcase of complete autonomy. According to Tesla staff, the vehicle lacks both a steering wheel and pedals, relying entirely on Tesla’s cameras and an end-to-end neural network designed for full self-driving.

The Cybercab will ultimately serve in the company’s expanding Robotaxi fleet, a cornerstone of Elon Musk’s long-promised autonomous mobility network. During the event, a Tesla employee emphasized that the Cybercab’s model’s compact layout reflects real-world usage, as 92% of trips involve just one or two passengers, as noted in a Sina News report. Trips that require more passengers could easily be handled by the Model 3 and Model Y, which are both capable of seating four, or even five passengers.

Optimus, Tesla’s humanoid robot that is designed for both home and industrial use, was also present at the event. Similar to the Cybercab, Optimus also attracted quite a lot of attention from the event’s attendees.

Advertisement

Automakers reaffirm commitment to Chinese innovation

Other global automakers, including Volkswagen, Mercedes-Benz, and Honda, also displayed cutting-edge concept cars and intelligent systems, but few captured the same interest as Tesla’s bold showcase of its autonomy and robotics.

Beyond new models, this year’s CIIE highlighted a renewed focus on local innovation and collaboration in China’s rapidly evolving EV landscape. Executives from Volkswagen, Audi, and General Motors reaffirmed that their long-term strategies center on “in China, for China,” strengthening R&D operations and forming tech partnerships with domestic suppliers.

Continue Reading

Trending