Connect with us
A stack of 60 Starlink v0.9 satellites are prepared for their orbital launch debut in May 2019. (SpaceX) A stack of 60 Starlink v0.9 satellites are prepared for their orbital launch debut in May 2019. (SpaceX)

News

SpaceX planning four more Falcon 9-launched Starlink missions this year, permits show

An imposing stack of SpaceX's first 60 Starlink satellites is shown here prior to their inaugural launch. (SpaceX)

Published

on

According to a suite of eight FCC Special Temporary Authority licenses SpaceX filed for on August 30th, the company has plans for as many as four additional Starlink satellite launches in 2019, on top of Starlink’s May 23rd launch debut.

Additionally, SpaceX simultaneously requested that the FCC modify its current Starlink application to permit a slight change in orbital characteristics that would drastically improve the broadband satellite constellation’s coverage in its early stages. Combined, SpaceX appears to be extremely confident about the status and near-future progress to be made by its prospective Starlink constellation, confidence presumably inspired by the performance of the first 60 “v0.9” satellites launched three months ago.

Beta-test hiccups

Over the last three months, 50 of the 60 Starlink satellites launched on May 23rd have made their way to their final ~550 km (340 mi) circular orbits. As observed by astronomer Jonathan McDowell and partially confirmed by SpaceX’s own official statements, the company remains in contact with and – more or less – in control of all but three of the 60 Starlink prototypes. SpaceX did confirm in late June that two functioning satellites were being intentionally deorbited to test procedures and performance, while another three satellites had partially failed and were to “passively deorbit”.

Based on the phrasing of SpaceX’s June 28th update, it’s ambiguous if communication and/or control has been completely lost with those three satellites. Additionally, five more satellites have remained paused partway between their ~440 km insertion orbits and ~550 km operational orbits, described two months ago as “going through checkouts prior to completing their orbit raise.” For unknown reasons, that orbit raise never happened. This leaves SpaceX with 57 of 60 satellites that have effectively ‘survived’ and are still under some form of control, while 50 (83%) of the satellites have successfully reached their nominal operational orbits and are performing as intended.

SpaceX continues to waffle between describing these first 60 satellites – internally known as “Starlink v0.9” – as a development test and the first operational Starlink launch. A ~17% failure rate for satellite orbit raising would be unacceptable for a finished product but, on a positive note, is actually quite impressive if one assumes that the 60 spacecraft are high-fidelity prototypes, not operational satellites.

Although each satellite is just a few square meters, they may be able to serve internet to thousands of people simultaneously. (SpaceX)

In short, there is a lot of room for improvement – particularly in the realm of short and long-term reliability – but the likely fact that “v0.9” signifies a sort of Starlink beta test means that SpaceX’s next Starlink launches will feature updated and bug-fixed hardware. In the realm of satellites, the practice of flying prototypes as early as possible and risking failures to learn from experience is exceedingly rare, but this behavior is entirely consistent with SpaceX’s preferred approach to rocket and spacecraft development.

300 satellites, 7 months

As mentioned above, SpaceX applied for four FCC STA licenses – effectively communications-related launch permits – on August 30th, all for Starlink missions with nominal No Earlier Than (NET) launch dates in 2019. It must be noted that it’s exceptionally rare for the starting dates of STAs to actually correlate with launch dates, but a best-case scenario typically sees a given launch occur within a handful of weeks of that date. STAs last six months, providing plenty of buffer for all but the most extreme launch delays.

MissionDate (NET)
Starlink-1October 10th
Starlink-2October 25th
Starlink-3November 13th
Starlink-4December 8th

Advertisement
-->

Of note, NASASpaceflight.com recently published Cape Canaveral Air Force Station (CCAFS) and Kennedy Space Center (KSC) planning dates for SpaceX’s next two Starlink missions, confirming that the company is planning for launches roughly one week after the dates on its newly-requested FCC STAs. Those official planning dates show two back-to-back Starlink launches no earlier than (NET) October 17th and November 4th.

A general overview of Starlink’s bus, payload stacking, and solar arrays. (SpaceX)

In a best-case scenario where SpaceX successfully manufactures, delivers, and prepares the satellites and readies the Falcon 9 rockets assigned to launch them, the company could complete four more Starlink launches between now and the New Year. Sticking to a three-week cadence hopefully set by Starlink-1 and Starlink-2, two more launches could follow around late-November and mid-December. Of course, as just the first few truly operational launches of more or less finalized “v1.0” Starlink satellites, delays from manufacturing through launch flows are probable and should be expected.

Even completing just one more 60-satellite launch of an updated Starlink design would be an impressive achievement, making SpaceX the first and only entity – country or company – to place more than 100 satellites in orbit in the first year of a satellite system’s launch activities. In a best-case scenario, four additional Starlink launches in 2019 would abruptly take SpaceX from two satellite prototypes to operating almost 300 satellites – unequivocally the largest constellation in the world – in no more than seven months.

SpaceX's first Starlink launch was also Falcon 9 booster B1049's third launch ever.(SpaceX/Teslarati)
SpaceX completed its first Starlink launch on May 23rd, flying B1049 for the third time. SpaceX’s next Starlink launch will very likely mark the first time a booster has flown four orbital-class missions. (SpaceX)

Serving customers sooner

According to SpaceX’s Starlink.com website, Starlink will be able to start serving customers at Northern US and southern Canadian latitudes after just six launches (360 satellites), with limited “global coverage of the populated world” available after 24 launches (1440 satellites). However, per an FCC license modification request published on August 30th, the same day as 8 launch STAs, the company believes it can dramatically expedite Starlink coverage (regardless of launch rate) with one relatively simple modification.

This modification would leave inclination (orbit angle relative to Earth’s rotational axis), orbital altitude, and the number of satellites and launches completely unchanged, modifying Starlink’s orbital planes instead. It’s an extreme simplification of the reality of orbital mechanics, but one can imagine orbital planes as roughly akin to lanes on a road. To increase their reach, SpaceX wants to deploy Starlink satellites to three separate planes each launch, ultimately tripling the number of ‘lanes’ (from 24 to 72) while cutting the number of satellites in each ‘lane’ by two-thirds (from 66 to 22). In this analogy, it is logically easier to build fewer ‘lanes’, referring – in this case – to the challenge it poses to the launch vehicle, satellites, or both. SpaceX would only be able to triple Starlink’s orbital ‘lanes’ by requiring the satellites to do the bulk of their own orbit raising, leaning heavily on the performance and reliability of their SpaceX-built electric (ion) propulsion.

According to SpaceX, this could as much as halve the number of launches needed to achieve a given level of Starlink coverage, meaning that SpaceX’s early constellation could reach its initial operational status up to twice as quickly. SpaceX believes that this updated orbital layout of Starlink’s 1584 low Earth orbit (LEO) satellites would also significantly improve coverage and capabilities for areas with high population density (i.e. big cities).

Whether or not the FCC sees fit to rapidly grant SpaceX’s modification request in the next ~8 weeks, SpaceX’s next Starlink launches will be a major step forward for the company’s nascent communications constellation.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Model Y sold out in China for 2025

Customers who wish to get their cars by the end of the year would likely need to get an inventory unit.

Published

on

Credit: Grok Imagine

It appears that the Model Y has been sold out for 2025 in China. This seems to be true for the four variants of the vehicle that are currently offered in the country. 

Tesla China’s order page update

A look at Tesla China’s order page for the Model Y shows a message informing customers that those who wish to guarantee delivery by the end of the year should purchase an inventory unit. This was despite the Model Y RWD and Model Y L showing an estimated delivery timeline of 4-8 weeks, and the Model Y Long Range RWD and Model Y Long Range AWD showing 4-13 weeks. 

As per industry watchers, these updates on the Model Y’s order page suggest that Tesla China’s sales capacity for the remainder of 2025 has been sold out. The fact that estimated delivery timeframes for the Model Y Long Range RWD and AWD extend up to 13 weeks also bodes well for demand for the vehicle, especially given strong rivals like the Xiaomi YU7, which undercuts the Model Y in price. 

Tesla China’s upcoming big updates

What is quite interesting is that Tesla China is still competing in the country with one hand partly tied behind its back. So far, Tesla has only been able to secure partial approval for its flagship self-driving software, FSD, in China. This has resulted in V14 not being rolled out to the country yet. Despite this, Tesla China’s “Autopilot automatic assisted driving on urban roads,” as the system is called locally, has earned positive reviews from users.

As per Elon Musk during the 2025 Annual Shareholder Meeting, however, Tesla is expecting to secure full approval for FSD in China in early 2026. “We have partial approval in China, and we hopefully will have full approval in China around February or March or so. That’s what they’ve told us,” Musk said.

Advertisement
-->
Continue Reading

News

Tesla Full Self-Driving appears to be heading to Europe soon

For years, Musk has said the process for gaining approval in Europe would take significantly more time than it does in the United States. Back in 2019, he predicted it would take six to twelve months to gain approval for Europe, but it has taken much longer.

Published

on

Credit: Tesla

Tesla Full Self-Driving appears to be heading to Europe soon, especially as the company has continued to expand its testing phases across the continent.

It appears that the effort is getting even bigger, as the company recently posted a job for a Vehicle Operator in Prague, Czech Republic.

This would be the third country the company is seeking a Vehicle Operator in for the European market, joining Germany and Hungary, which already have job postings in Berlin, Prüm, and Budapest, respectively.

This position specifically targets the Engineering and Information Technology departments at Tesla, and not the Robotics and Artificial Intelligence job category that relates to Robotaxi job postings.

Although there has been a posting for Robotaxi Operators in the Eastern Hemisphere, more specifically, Israel, this specific posting has to do with data collection, likely to bolster the company’s position in Europe with FSD.

The job description says:

“We are seeking a highly motivated employee to strengthen our team responsible for vehicle data collection. The Driver/Vehicle Operator position is tasked with capturing high-quality data that contributes to improving our vehicles’ performance. This role requires self-initiative, flexibility, attention to detail, and the ability to work in a dynamic environment.”

It also notes the job is for a fixed term of one year.

The position requires operation of a vehicle for data collection within a defined area, and requires the Vehicle Operator to provide feedback to improve data collection processes, analyze and report collected data, and create daily driving reports.

The posting also solidifies the company’s intention to bring its Full Self-Driving platform to Europe in the coming months, something it has worked tirelessly to achieve as it spars with local regulators.

For years, Musk has said the process for gaining approval in Europe would take significantly more time than it does in the United States. Back in 2019, he predicted it would take six to twelve months to gain approval for Europe, but it has taken much longer.

This year, Musk went on to say that the process of getting FSD to move forward has been “very frustrating,” and said it “hurts the safety of the people of Europe.”

Elon Musk clarifies the holdup with Tesla Full Self-Driving launch in Europe

The latest update Musk gave us was in July, when he said that Tesla was awaiting regulatory approval.

Continue Reading

News

Tesla celebrates 75k Superchargers, less than 5 months since 70k-stall milestone

Tesla’s 75,000th stall is hosted at the South Hobart Smart Store on Cascade Road, South Hobart, Tasmania.

Published

on

Credit: Tesla Charging/X

Tesla has crossed another major charging milestone by officially installing its 75,000th Supercharger stall worldwide. The electric vehicle maker chose South Hobart, Tasmania, as the commemorative location of its 75,000th Supercharger. 

Tesla’s 75,000th Supercharger

Tesla’s 75,000th stall is hosted at the South Hobart Smart Store on Cascade Road, South Hobart, TAS 7004, as noted in a techAU report. The location features four next-generation V4 Superchargers, which are built with longer cables that should make it easy even for non-Teslas to use the rapid charger. The site also includes simplified payment options, aligning with Tesla’s push to make V4 stations more accessible to a broader set of drivers.

For Tasmanian EV owners, the installation fills an important regional gap, improving long-distance coverage around Hobart and strengthening the area’s appeal for mainland travelers traveling by electric vehicle. Similar to other commemorative Superchargers, the 70,000th stall is quite special as it is finished in Glacier Blue paint. Tesla’s 50,000th stall, which is in California, is painted a stunning red, and the 60,000th stall, which is in Japan, features unique origami-inspired graphics.

https://twitter.com/TeslaCharging/status/1991019320584122471?s=20

Accelerating Supercharger milestones

The Tesla Supercharger’s pace of expansion shows no signs of slowing. Tesla celebrated its 70,000th stall at a 12-stall site in Burleson, Texas late June 2025. Just eight months earlier, Tesla announced that it had celebrated the buildout of its 60,000th Supercharger, which was built in Enshu Morimachi, Shizuoka Prefecture, Japan.

Tesla’s Supercharger Network also recently received accolades in the United Kingdom, with the 2025 Zapmap survey naming the rapid charging system as the Best Large EV Charging Network for the second year in a row. Survey respondents praised the Supercharger Network for its ease of use, price, and reliability, which is best-in-class. The fact that the network has also been opened for non-Teslas is just icing on the cake. 

Advertisement
-->
https://www.youtube.com/shorts/7JCwOa-IYuE?feature=share
Continue Reading