Connect with us
A stack of 60 Starlink v0.9 satellites are prepared for their orbital launch debut in May 2019. (SpaceX) A stack of 60 Starlink v0.9 satellites are prepared for their orbital launch debut in May 2019. (SpaceX)

News

SpaceX planning four more Falcon 9-launched Starlink missions this year, permits show

An imposing stack of SpaceX's first 60 Starlink satellites is shown here prior to their inaugural launch. (SpaceX)

Published

on

According to a suite of eight FCC Special Temporary Authority licenses SpaceX filed for on August 30th, the company has plans for as many as four additional Starlink satellite launches in 2019, on top of Starlink’s May 23rd launch debut.

Additionally, SpaceX simultaneously requested that the FCC modify its current Starlink application to permit a slight change in orbital characteristics that would drastically improve the broadband satellite constellation’s coverage in its early stages. Combined, SpaceX appears to be extremely confident about the status and near-future progress to be made by its prospective Starlink constellation, confidence presumably inspired by the performance of the first 60 “v0.9” satellites launched three months ago.

Beta-test hiccups

Over the last three months, 50 of the 60 Starlink satellites launched on May 23rd have made their way to their final ~550 km (340 mi) circular orbits. As observed by astronomer Jonathan McDowell and partially confirmed by SpaceX’s own official statements, the company remains in contact with and – more or less – in control of all but three of the 60 Starlink prototypes. SpaceX did confirm in late June that two functioning satellites were being intentionally deorbited to test procedures and performance, while another three satellites had partially failed and were to “passively deorbit”.

Based on the phrasing of SpaceX’s June 28th update, it’s ambiguous if communication and/or control has been completely lost with those three satellites. Additionally, five more satellites have remained paused partway between their ~440 km insertion orbits and ~550 km operational orbits, described two months ago as “going through checkouts prior to completing their orbit raise.” For unknown reasons, that orbit raise never happened. This leaves SpaceX with 57 of 60 satellites that have effectively ‘survived’ and are still under some form of control, while 50 (83%) of the satellites have successfully reached their nominal operational orbits and are performing as intended.

SpaceX continues to waffle between describing these first 60 satellites – internally known as “Starlink v0.9” – as a development test and the first operational Starlink launch. A ~17% failure rate for satellite orbit raising would be unacceptable for a finished product but, on a positive note, is actually quite impressive if one assumes that the 60 spacecraft are high-fidelity prototypes, not operational satellites.

Although each satellite is just a few square meters, they may be able to serve internet to thousands of people simultaneously. (SpaceX)

In short, there is a lot of room for improvement – particularly in the realm of short and long-term reliability – but the likely fact that “v0.9” signifies a sort of Starlink beta test means that SpaceX’s next Starlink launches will feature updated and bug-fixed hardware. In the realm of satellites, the practice of flying prototypes as early as possible and risking failures to learn from experience is exceedingly rare, but this behavior is entirely consistent with SpaceX’s preferred approach to rocket and spacecraft development.

300 satellites, 7 months

As mentioned above, SpaceX applied for four FCC STA licenses – effectively communications-related launch permits – on August 30th, all for Starlink missions with nominal No Earlier Than (NET) launch dates in 2019. It must be noted that it’s exceptionally rare for the starting dates of STAs to actually correlate with launch dates, but a best-case scenario typically sees a given launch occur within a handful of weeks of that date. STAs last six months, providing plenty of buffer for all but the most extreme launch delays.

MissionDate (NET)
Starlink-1October 10th
Starlink-2October 25th
Starlink-3November 13th
Starlink-4December 8th

Advertisement
-->

Of note, NASASpaceflight.com recently published Cape Canaveral Air Force Station (CCAFS) and Kennedy Space Center (KSC) planning dates for SpaceX’s next two Starlink missions, confirming that the company is planning for launches roughly one week after the dates on its newly-requested FCC STAs. Those official planning dates show two back-to-back Starlink launches no earlier than (NET) October 17th and November 4th.

A general overview of Starlink’s bus, payload stacking, and solar arrays. (SpaceX)

In a best-case scenario where SpaceX successfully manufactures, delivers, and prepares the satellites and readies the Falcon 9 rockets assigned to launch them, the company could complete four more Starlink launches between now and the New Year. Sticking to a three-week cadence hopefully set by Starlink-1 and Starlink-2, two more launches could follow around late-November and mid-December. Of course, as just the first few truly operational launches of more or less finalized “v1.0” Starlink satellites, delays from manufacturing through launch flows are probable and should be expected.

Even completing just one more 60-satellite launch of an updated Starlink design would be an impressive achievement, making SpaceX the first and only entity – country or company – to place more than 100 satellites in orbit in the first year of a satellite system’s launch activities. In a best-case scenario, four additional Starlink launches in 2019 would abruptly take SpaceX from two satellite prototypes to operating almost 300 satellites – unequivocally the largest constellation in the world – in no more than seven months.

SpaceX's first Starlink launch was also Falcon 9 booster B1049's third launch ever.(SpaceX/Teslarati)
SpaceX completed its first Starlink launch on May 23rd, flying B1049 for the third time. SpaceX’s next Starlink launch will very likely mark the first time a booster has flown four orbital-class missions. (SpaceX)

Serving customers sooner

According to SpaceX’s Starlink.com website, Starlink will be able to start serving customers at Northern US and southern Canadian latitudes after just six launches (360 satellites), with limited “global coverage of the populated world” available after 24 launches (1440 satellites). However, per an FCC license modification request published on August 30th, the same day as 8 launch STAs, the company believes it can dramatically expedite Starlink coverage (regardless of launch rate) with one relatively simple modification.

This modification would leave inclination (orbit angle relative to Earth’s rotational axis), orbital altitude, and the number of satellites and launches completely unchanged, modifying Starlink’s orbital planes instead. It’s an extreme simplification of the reality of orbital mechanics, but one can imagine orbital planes as roughly akin to lanes on a road. To increase their reach, SpaceX wants to deploy Starlink satellites to three separate planes each launch, ultimately tripling the number of ‘lanes’ (from 24 to 72) while cutting the number of satellites in each ‘lane’ by two-thirds (from 66 to 22). In this analogy, it is logically easier to build fewer ‘lanes’, referring – in this case – to the challenge it poses to the launch vehicle, satellites, or both. SpaceX would only be able to triple Starlink’s orbital ‘lanes’ by requiring the satellites to do the bulk of their own orbit raising, leaning heavily on the performance and reliability of their SpaceX-built electric (ion) propulsion.

According to SpaceX, this could as much as halve the number of launches needed to achieve a given level of Starlink coverage, meaning that SpaceX’s early constellation could reach its initial operational status up to twice as quickly. SpaceX believes that this updated orbital layout of Starlink’s 1584 low Earth orbit (LEO) satellites would also significantly improve coverage and capabilities for areas with high population density (i.e. big cities).

Whether or not the FCC sees fit to rapidly grant SpaceX’s modification request in the next ~8 weeks, SpaceX’s next Starlink launches will be a major step forward for the company’s nascent communications constellation.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla expands its branded ‘For Business’ Superchargers

Published

on

Credit: Francis Energy

Tesla has expanded its branded ‘For Business’ Supercharger program that it launched last year, as yet another company is using the platform to attract EV owners to its business and utilize a unique advertising opportunity.

Francis Energy of Oklahoma is launching four Superchargers in Norman, where the University of Oklahoma is located. The Superchargers, which are fitted with branding for Francis Energy, will officially open tomorrow.

It will not be the final Supercharger location that Francis Energy plans to open, the company confirmed to EVWire.

Back in early September, Tesla launched the new “Supercharger for Business” program in an effort to give businesses the ability to offer EV charging at custom rates. It would give their businesses visibility and would also cater to employees or customers.

“Purchase and install Superchargers at your business,” Tesla wrote on a page on its website for the new program. “Superchargers are compatible with all electric vehicles, bringing EV drivers to your business by offering convenient, reliable charging.”

The first site opened in Land O’ Lakes, Florida, which is Northeast of Tampa, as a company called Suncoast launched the Superchargers for local EV owners.

Tesla launches its new branded Supercharger for Business with first active station

The program also does a great job at expanding infrastructure for EV owners, which is something that needs to be done to encourage more people to purchase Teslas and other electric cars.

Francis Energy operates at least 14 EV charging locations in Oklahoma, spanning from Durant to Oklahoma City and nearly everywhere in between. Filings from the company, listed by Supercharge.info, show the company’s plans to convert some of them to Tesla Superchargers, potentially utilizing the new Supercharger for Business program to advertise.

Moving forward, more companies will likely utilize Tesla’s Supercharger for Business program as it presents major advantages in a variety of ways, especially with advertising and creating a place for EV drivers to gain range in their cars.

Continue Reading

News

Tesla Cybercab ‘breakdown’ image likely is not what it seems

Published

on

Credit: TslaChan | X

Tesla Cybercab is perhaps the most highly-anticipated project that the company plans to roll out this year, and as it is undergoing its testing phase in pre-production currently, there are some things to work through with it.

Over the weekend, an image of the Cybercab being loaded onto a tow truck started circulating on the internet, and people began to speculate as to what the issue could be.

The Cybercab can clearly be seen with a Police Officer and perhaps the tow truck driver by its side, being loaded onto, or even potentially unloaded from, the truck.

However, it seems unlikely it was being offloaded, as its operation would get it to this point for testing to begin with.

It appears, at first glance, that it needs assistance getting back to wherever it came from; likely Gigafactory Texas or potentially a Bay Area facility.

The Cybercab was also spotted in Buffalo, New York, last week, potentially undergoing cold-weather testing, but it doesn’t appear that’s where this incident took place.

It is important to remember that the Cybercab is currently undergoing some rigorous testing scenarios, which include range tests and routine public road operation. These things help Tesla assess any potential issue the vehicle could run into after it starts routine production and heads to customers, or for the Robotaxi platform operation.

This is not a one-off issue, either. Tesla had some instances with the Semi where it was seen broken down on the side of a highway three years ago. The all-electric Semi has gone on to be successful in its early pilot program, as companies like Frito-Lay and PepsiCo. have had very positive remarks.

Tesla reveals its first Semi customer after launch

The Cybercab’s future is bright, and it is important to note that no vehicle model has ever gone its full life without a breakdown. It happens, it’s a car.

Nevertheless, it is important to note that there has been no official word on what happened with this particular Cybercab unit, but it is crucial to remember that this is the pre-production testing phase, and these things are more constructive than anything.

Continue Reading

Investor's Corner

Tesla analyst teases self-driving dominance in new note: ‘It’s not even close’

Published

on

Credit: Tesla

Tesla analyst Andrew Percoco of Morgan Stanley teased the company’s dominance in its self-driving initiative, stating that its lead over competitors is “not even close.”

Percoco recently overtook coverage of Tesla stock from Adam Jonas, who had covered the company at Morgan Stanley for years. Percoco is handling Tesla now that Jonas is covering embodied AI stocks and no longer automotive.

His first move after grabbing coverage was to adjust the price target from $410 to $425, as well as the rating from ‘Overweight’ to ‘Equal Weight.’

Percoco’s new note regarding Tesla highlights the company’s extensive lead in self-driving and autonomy projects, something that it has plenty of competition in, but has established its prowess over the past few years.

He writes:

“It’s not even close. Tesla continues to lead in autonomous driving, even as Nvidia rolls out new technology aimed at helping other automakers build driverless systems.”

Percoco’s main point regarding Tesla’s advantage is the company’s ability to collect large amounts of training data through its massive fleet, as millions of cars are driving throughout the world and gathering millions of miles of vehicle behavior on the road.

This is the main point that Percoco makes regarding Tesla’s lead in the entire autonomy sector: data is King, and Tesla has the most of it.

One big story that has hit the news over the past week is that of NVIDIA and its own self-driving suite, called Alpamayo. NVIDIA launched this open-source AI program last week, but it differs from Tesla’s in a significant fashion, especially from a hardware perspective, as it plans to use a combination of LiDAR, Radar, and Vision (Cameras) to operate.

Percoco said that NVIDIA’s announcement does not impact Morgan Stanley’s long-term opinions on Tesla and its strength or prowess in self-driving.

NVIDIA CEO Jensen Huang commends Tesla’s Elon Musk for early belief

And, for what it’s worth, NVIDIA CEO Jensen Huang even said some remarkable things about Tesla following the launch of Alpamayo:

“I think the Tesla stack is the most advanced autonomous vehicle stack in the world. I’m fairly certain they were already using end-to-end AI. Whether their AI did reasoning or not is somewhat secondary to that first part.”

Percoco reiterated both the $425 price target and the ‘Equal Weight’ rating on Tesla shares.

Continue Reading