News
SpaceX begins launching new shell of polar Starlink satellites
SpaceX has begun launching a new group of Starlink satellites that will eventually create a ‘shell’ of near-polar communications satellites capable of serving some of the most remote customers on Earth.
Known as Starlink Group 3-1, the mission was also SpaceX’s 50th dedicated Starlink launch since the company first launched a full batch of prototype satellites in May 2019. Just three years later, SpaceX’s Starlink constellation is responsible for roughly half of all working satellites currently in Earth orbit – a figure that is likely to continue to grow for the indefinite future.
Falcon 9 lifted off from SpaceX’s Vandenberg Space Force Base (VSFB) SLC-4E pad at 6:39 pm PDT on July 10th carrying 46 Starlink V1.5 satellites – a payload of around 14 tons (~30,000 lb). SpaceX reduced the number of satellites from the usual 53 to account for the mission’s unusual (relative to Starlink) trajectory and target orbit. Instead of the usual dozens of missions to a fairly ordinary 53-degree orbit around Earth’s midlatitudes and equatorial regions, Starlink 3-1 is the first of several planned missions to a near-polar orbit in which satellites will cross Earth’s equatorial plane at an angle of 97.6 degrees
That orbit is technically slightly retrograde or against the direction of Earth’s rotation, which means that Starlink Group 3 launches will have to work against Earth’s rotation – a bit like trying to climb the wrong escalator. It isn’t SpaceX’s first Starlink launch to a near-polar orbit: the company has technically launched 15 Starlink prototypes to a variety of slightly different sun-synchronous orbits very similar to Starlink 3-1’s target. SpaceX also launched a single batch of Starlink Group 2 satellites to a 70-degree semi-polar shell in September 2021. The purpose of the 51 Starlink 2-1 satellites – only 19 of which appear to be operational – is unclear, though, and only 3 of the other 15 prototypes are still in orbit.

As a result, Group 3 could become the first polar Starlink ‘shell’ to truly enter general service. SpaceX already has plans for a second Group 3 launch – Starlink 3-2 – as early as the end of July, and at 46 satellites apiece, as few as eight launches will be needed to complete the 348-satellite shell. Once complete, it should give SpaceX the ability to serve customers in high-latitude and polar regions.
If or when the US Federal Communications Commission (FCC) gives SpaceX permission to activate thousands of intersatellite laser links installed on the ~1000 Starlink V1.5 satellites already in orbit, the new polar shell could even allow Starlink to connect planes, ships, or outposts that are hundreds or thousands of miles from the nearest ground station. In theory, polar Starlink satellites could even connect Antarctic research outposts to the internet.
Starlink 3-1 was SpaceX’s 50th dedicated Starlink launch since May 2019 and 49th operational Starlink launch since November 2019, bringing the total number of working Starlink satellites in orbit to 2518. Of those 2518, more than 2000 have reached operational orbits and are likely serving some of SpaceX’s roughly half a million customers. Thanks to apparent improvements in reliability that have seen only 9 of 1065 Starlink V1.5 satellites suffer technical failures since launches began in November 2021, almost 90% of all the Starlink satellites SpaceX has ever launched are still in orbit – and functional – today.
News
Tesla FSD fleet is nearing 7 billion total miles, including 2.5 billion city miles
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles.
Tesla’s Full Self-Driving (Supervised) fleet is closing in on almost 7 billion total miles driven, as per data posted by the company on its official FSD webpage.
These figures hint at the massive scale of data fueling Tesla’s rapid FSD improvements, which have been quite notable as of late.
FSD mileage milestones
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles. Tesla owner and avid FSD tester Whole Mars Catalog also shared a screenshot indicating that from the nearly 7 billion miles traveled by the FSD fleet, more than 2.5 billion miles were driven inside cities.
City miles are particularly valuable for complex urban scenarios like unprotected turns, pedestrian interactions, and traffic lights. This is also the difference-maker for FSD, as only complex solutions, such as Waymo’s self-driving taxis, operate similarly on inner-city streets. And even then, incidents such as the San Francisco blackouts have proven challenging for sensor-rich vehicles like Waymos.
Tesla’s data edge
Tesla has a number of advantages in the autonomous vehicle sector, one of which is the size of its fleet and the number of vehicles training FSD on real-world roads. Tesla’s nearly 7 billion FSD miles then allow the company to roll out updates that make its vehicles behave like they are being driven by experienced drivers, even if they are operating on their own.
So notable are Tesla’s improvements to FSD that NVIDIA Director of Robotics Jim Fan, after experiencing FSD v14, noted that the system is the first AI that passes what he described as a “Physical Turing Test.”
“Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies,” Fan wrote in a post on X.
News
Tesla starts showing how FSD will change lives in Europe
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options.
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Officials see real impact on rural residents
Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”
The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.
What the Ministry for Economic Affairs and Transport says
Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents.
“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe.
“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post.
News
Tesla China quietly posts Robotaxi-related job listing
Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China.
As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Robotaxi-specific role
The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi.
Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.
China Robotaxi launch
China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.
This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees.