Connect with us

News

SpaceX begins launching new shell of polar Starlink satellites

Published

on

SpaceX has begun launching a new group of Starlink satellites that will eventually create a ‘shell’ of near-polar communications satellites capable of serving some of the most remote customers on Earth.

Known as Starlink Group 3-1, the mission was also SpaceX’s 50th dedicated Starlink launch since the company first launched a full batch of prototype satellites in May 2019. Just three years later, SpaceX’s Starlink constellation is responsible for roughly half of all working satellites currently in Earth orbit – a figure that is likely to continue to grow for the indefinite future.

Falcon 9 lifted off from SpaceX’s Vandenberg Space Force Base (VSFB) SLC-4E pad at 6:39 pm PDT on July 10th carrying 46 Starlink V1.5 satellites – a payload of around 14 tons (~30,000 lb). SpaceX reduced the number of satellites from the usual 53 to account for the mission’s unusual (relative to Starlink) trajectory and target orbit. Instead of the usual dozens of missions to a fairly ordinary 53-degree orbit around Earth’s midlatitudes and equatorial regions, Starlink 3-1 is the first of several planned missions to a near-polar orbit in which satellites will cross Earth’s equatorial plane at an angle of 97.6 degrees

That orbit is technically slightly retrograde or against the direction of Earth’s rotation, which means that Starlink Group 3 launches will have to work against Earth’s rotation – a bit like trying to climb the wrong escalator. It isn’t SpaceX’s first Starlink launch to a near-polar orbit: the company has technically launched 15 Starlink prototypes to a variety of slightly different sun-synchronous orbits very similar to Starlink 3-1’s target. SpaceX also launched a single batch of Starlink Group 2 satellites to a 70-degree semi-polar shell in September 2021. The purpose of the 51 Starlink 2-1 satellites – only 19 of which appear to be operational – is unclear, though, and only 3 of the other 15 prototypes are still in orbit.

As a result, Group 3 could become the first polar Starlink ‘shell’ to truly enter general service. SpaceX already has plans for a second Group 3 launch – Starlink 3-2 – as early as the end of July, and at 46 satellites apiece, as few as eight launches will be needed to complete the 348-satellite shell. Once complete, it should give SpaceX the ability to serve customers in high-latitude and polar regions.

If or when the US Federal Communications Commission (FCC) gives SpaceX permission to activate thousands of intersatellite laser links installed on the ~1000 Starlink V1.5 satellites already in orbit, the new polar shell could even allow Starlink to connect planes, ships, or outposts that are hundreds or thousands of miles from the nearest ground station. In theory, polar Starlink satellites could even connect Antarctic research outposts to the internet.

Advertisement
-->
https://twitter.com/TomCross/status/1546322117309870081

Starlink 3-1 was SpaceX’s 50th dedicated Starlink launch since May 2019 and 49th operational Starlink launch since November 2019, bringing the total number of working Starlink satellites in orbit to 2518. Of those 2518, more than 2000 have reached operational orbits and are likely serving some of SpaceX’s roughly half a million customers. Thanks to apparent improvements in reliability that have seen only 9 of 1065 Starlink V1.5 satellites suffer technical failures since launches began in November 2021, almost 90% of all the Starlink satellites SpaceX has ever launched are still in orbit – and functional – today.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla hosts Rome Mayor for first Italian FSD Supervised road demo

The event marked the first time an Italian mayor tested the advanced driver-assistance system in person in Rome’s urban streets.

Published

on

Credit: @andst7/X

Tesla definitely seems to be actively engaging European officials on FSD’s capabilities, with the company hosting Rome Mayor Roberto Gualtieri and Mobility Assessor Eugenio Patanè for a hands-on road demonstration. 

The event marked the first time an Italian mayor tested the advanced driver-assistance system in person in Rome’s urban streets. This comes amid Tesla’s push for FSD’s EU regulatory approvals in the coming year.

Rome officials experience FSD Supervised

Tesla conducted the demo using a Model 3 equipped with Full Self-Driving (Supervised), tackling typical Roman traffic including complex intersections, roundabouts, pedestrian crossings and mixed users like cars, bikes and scooters.

The system showcased AI-based assisted driving, prioritizing safety while maintaining flow. FSD also handled overtakes and lane decisions, though with constant driver supervision.

Investor Andrea Stroppa detailed the event on X, noting the system’s potential to reduce severe collision risks by up to seven times compared to traditional driving, based on Tesla’s data from billions of global fleet miles. The session highlighted FSD’s role as an assistance tool in its Supervised form, not a replacement, with the driver fully responsible at all times.

Advertisement
-->

Path to European rollout

Tesla has logged over 1 million kilometers of testing across 17 European countries, including Italy, to refine FSD for local conditions. The fact that Rome officials personally tested FSD Supervised bodes well for the program’s approval, as it suggests that key individuals are closely watching Tesla’s efforts and innovations.

Assessor Patanè also highlighted the administration’s interest in technologies that boost road safety and urban travel quality, viewing them as aids for both private and public transport while respecting rules.

Replies on X urged involving Italy’s Transport Ministry to speed approvals, with one user noting, “Great idea to involve the mayor! It would be necessary to involve components of the Ministry of Transport and the government as soon as possible: it’s they who can accelerate the approval of FSD in Italy.”

Continue Reading

News

Tesla FSD (Supervised) blows away French journalist after test ride

Cadot described FSD as “mind-blowing,” both for the safety of the vehicle’s driving and the “humanity” of its driving behaviors.

Published

on

Credit: Grok Imagine

Tesla’s Full Self-Driving (Supervised) seems to be making waves in Europe, with French tech journalist Julien Cadot recently sharing a positive first-hand experience from a supervised test drive in France. 

Cadot, who tested the system for Numerama after eight years of anticipation since early Autopilot trials, described FSD as “mind-blowing,” both for the safety of the vehicle’s driving and the “humanity” of its driving behaviors.

 

Julien Cadot’s FSD test in France

Cadot announced his upcoming test on X, writing in French: “I’m going to test Tesla’s FSD for Numerama in France. 8 years I’ve been waiting to relive the sensations of our very first contact with the unbridled Autopilot of the 2016s.” He followed up shortly after with an initial reaction, writing: “I don’t want to spoil too much because as media we were allowed to film everything and I have a huge video coming… But: it’s mind-blowing! Both for safety and for the ‘humanity’ of the choices.”

His later posts detailed FSD’s specific maneuvers that he found particularly compelling. These include the vehicle safely overtaking a delivery truck by inches, something Cadot said he personally would avoid to protect his rims, but FSD handled flawlessly. He also praised FSD’s cyclist overtakes, as the system always maintained the required 1.5-meter distance by encroaching on the opposite lane when clear. Ultimately, Cadot noted FSD’s decision-making prioritized safety and advancement, which is pretty remarkable.

Advertisement
-->

FSD’s ‘human’ edge over Autopilot

When asked if FSD felt light-years ahead of standard Autopilot, Cadot replied: “It’s incomparable, it’s not the same language.” He elaborated on scenarios like bypassing a parked delivery truck across a solid white line, where FSD assessed safety and proceeded just as a human driver might, rather than halting indefinitely. This “humanity” impressed Cadot the most, as it allowed FSD to fluidly navigate real-world chaos like urban Paris traffic. 

Tesla is currently hard at work pushing for the rollout of FSD to several European countries. Recent reports have revealed that Tesla has received approval to operate 19 FSD test vehicles on Spain’s roads, though this number could increase as the program develops. As per the Dirección General de Tráfico (DGT), Tesla would be able to operate its FSD fleet on any national route across Spain. Recent job openings also hint at Tesla starting FSD tests in Austria. Apart from this, the company is also holding FSD demonstrations in Germany, France, and Italy.

Continue Reading

Elon Musk

Tesla Optimus shows off its newest capability as progress accelerates

Published

on

Credit: Tesla

Tesla Optimus showed off its newest capability as progress on the project continues to accelerate toward an ultimate goal of mass production in the coming years.

Tesla is still developing Optimus and preparing for the first stages of mass production, where units would be sold and shipped to customers. CEO Elon Musk has always marketed the humanoid robot as the biggest product in history, even outside of Tesla, but of all time.

He believes it will eliminate the need to manually perform monotonous tasks, like cleaning, mowing the lawn, and folding laundry.

However, lately, Musk has revealed even bigger plans for Optimus, including the ability to relieve humans of work entirely within the next 20 years.

Development at Tesla’s Artificial Intelligence and Robotics teams has progressed, and a new video was shown of the robot taking a light jog with what appeared to be some pretty natural form:

Optimus has also made several public appearances lately, including one at the Neural Information Processing Systems, or NeurIPS Conference. Some spectators shared videos of Optimus’s charging rig, as well as its movements and capabilities, most interestingly, the hand:

The hand, forearm, and fingers have been one of the most evident challenges for Tesla in recent times, especially as it continues to work on its 3rd Generation iteration of Optimus.

Musk said during the Q3 Earnings Call:

“I don’t want to downplay the difficulty, but it’s an incredibly difficult thing, especially to create a hand that is as dexterous and capable as the human hand, which is incredible. The human hand is an incredible thing. The more you study the human hand, the more incredible you realize it is, and why you need four fingers and a thumb, why the fingers have certain degrees of freedom, why the various muscles are of different strengths, and fingers are of different lengths. It turns out that those are all there for a reason.”

The interesting part of the Optimus program so far is the fact that Tesla has made a lot of progress with other portions of the project, like movement, for example, which appears to have come a long way.

However, without a functional hand and fingers, Optimus could be rendered relatively useless, so it is evident that it has to figure this crucial part out first.

Continue Reading