Connect with us

SpaceX

SpaceX’s Starlink satellite lawyers refute latest “flawed” OneWeb critique

Dozens of OneWeb satellites visualized during a future Ariane 6 constellation launch. (Arianespace)

Published

on

After years of relentless legal badgering from internet satellite constellation competitor OneWeb, SpaceX’s regulatory and legal affairs team appears to have begun to (in a professional manner) lose patience with the constant barrage.

On February 21st, SpaceX published a withering refutation of OneWeb’s latest criticism that offered a range of no-holds-barred counterarguments, painting the competitor – or at least its legal affairs department – as an entity keen on trying to undermine Starlink with FCC-directed critiques based on flawed reasoning, false assumptions, misinterpretations, and more. Alongside a number of memorable one-liners and retorts, legal counselors William Wiltshire and Paul Caritj and SpaceX executives Patricia Cooper and David Goldman openly “wonder whether OneWeb would be satisfied with SpaceX operating at any altitude whatsoever.”

One of the first two prototype Starlink satellites separates from Falcon 9’s upper stage in February 2018. (SpaceX)

SpaceX’s Starlink modification request

In late 2018, SpaceX filed a request with the FCC (Federal Communications Commission) that would allow the company to significantly modify parts of its Starlink satellite constellation license, cutting 16 spacecraft from the original total of 4425 and moving Phase 1’s now-1584 satellites from an operating altitude of ~1100-1300 km (680-810 mi) to just 550 km (340 mi). Aside from further reducing the latency of communications, SpaceX also argues that “the principal reason” behind lowering the operational altitude of the first ~37% of Starlink satellites was “to [further] enhance the already considerable space safety attributes of [the] constellation.”

SpaceX’s first two Starlink prototype satellites are pictured here before their inaugural launch, showing off a thoroughly utilitarian bus and several advanced components. (SpaceX)

The safety benefits of a significantly lower orbit come into play when the potential dangers of space debris come into play. Put simply, satellites in lower orbits – particularly orbits below ~1000 km – end up experiencing far more drag from the upper vestiges of the Earth’s atmosphere, drag that acts like an automatic switch in the event that a given LEO satellite loses control. At 500 km and below, even small spacecraft with enough surface area will automatically reenter Earth’s atmosphere within just a few years (~5), while orbits around 1000-1500 km can stretch the time to reentry by a factor of 5-10, often taking decades. In other words, SpaceX’s desire to lower the initial operating orbit of ~1600 Starlink satellites would end up dramatically reducing the consequences the failure of one or several satellites would have on other spacecraft operating in the same orbital regions

“Rather than base its critiques on facts in SpaceX’s application or evidence in the record, OneWeb relies entirely on a collection of flawed assumptions cobbled together into an equally-flawed fictional scenario.

Overall, OneWeb rested its interference analysis entirely on incorrect assumptions and overlooked basic operational distinctions in the actual effect of the proposed SpaceX modification.”

SpaceX, FCC SAT-MOD-20181108-00083, 02/21/2019 [PDF]

A step further, there is a great deal more irony to be found in OneWeb’s attempt to block SpaceX from lowering the orbit of its first ~1600 satellites. In 2017 and 2018, the company repeatedly complained to the FCC about the fact that SpaceX’s Starlink constellation was to nominally be placed in orbits from ~1100-1300 km, effectively sandwiching OneWeb’s own ~1200 km constellation. OneWeb continues to demand an unreasonable level of special treatment from the FCC, hoping that the commission will allow it to establish a sort of buffer zone extending 125 km above and below its own constellation, basically demanding that a huge swath of low Earth orbit be OneWeb’s and OneWeb’s alone. In reality, this is likely nothing more than a thinly veiled anti-competitive tactic, in which success would almost entirely bar other prospective space-based internet providers from even considering the same orbit.

SpaceX never explicitly says as much but it becomes eminently clear that the authors behind this latest response are rapidly losing patience with OneWeb’s years of shoddy attempts at legally suppressing competition. Given that lowering the orbits of almost 40% of SpaceX’s first round of Starlink satellites would end up working in OneWeb’s claimed favor, moving them out of what OneWeb views as its orbital territory, arguing against such a change would explicitly contradict arguments the company has made in prior SpaceX-focused complaints to the FCC.

“OneWeb is now challenging SpaceX’s plan to reduce altitude to further enhance the space safety attributes of its system. Considering OneWeb’s frequent request that SpaceX take this exact step of moving farther away from OneWeb’s proposed constellation, one is left to wonder whether OneWeb would be satisfied with SpaceX operating at any altitude whatsoever.

SpaceX, 02/21/2019

SpaceX’s Starlink internet satellite constellation visualized with just 1600 satellites. (Mark Handley)

SpaceX takes a different approach

Aside from seemingly hollow concerns about the “safety” of SpaceX’s request to lower Starlink satellite orbits, OneWeb further criticized SpaceX for what it perceived to be “operational setbacks” after launching a duo of prototype Starlink spacecraft, known as Tintin A and B. In essence, it appears that OneWeb made the bizarre decision to cite officially-unconfirmed and often-disputed reports that SpaceX’s prototypes were unable to reach their originally planned operational orbits of ~1125 km, effectively trapped at the ~515 km orbit they were dropped off in as a result of their shared launch.

“SpaceX originally expected to operate these satellites at approximately 515 km and then raise them to an altitude of 1,125 km for further testing, but chose not to do so. From this, OneWeb leaps to an unsupported conclusion that SpaceX’s experimental satellites faced “operational setbacks.” To the contrary, SpaceX made a conscious decision to remain at this optimal altitude for further experimentation.

Far from facing setbacks, the experimental program has validated SpaceX technology – including the Hall-effect thruster propulsion system and the capabilities of the communications payload. Thus, unlike OneWeb, SpaceX has successfully tested its spacecraft design in advance of initiating deployment of its commercial constellation.

SpaceX, 02/21/2019

While there was, in fact, some plausible evidence in mid-2018 that at least tentatively suggested that the spacecraft may have had issues with their first-generation ion thruster prototypes, it soon became clear that SpaceX and several major investors were sticking to the narrative that the Tintin twins were operating in fine health in orbit. It’s possible that SpaceX’s legal team and government relations executives are trying to aggressively spin on-orbit difficulties with the prototypes into good news, and the fact that SpaceX is requesting a modification to 550 km instead of Tintin A and B’s ~520 km orbits remains more than a little odd. However, including such brazen and open-faced lies in official legal/regulatory documents would be a deathwish SpaceX’s Starlink license in its entirety, while also begging for major SpaceX-aimed lawsuits and a general black cloud forming over the company.

If the FCC ultimately chooses to permit SpaceX’s Starlink license modification, the company’s first more or less operational Starlink launch – likely carrying anywhere from 10 to 30 satellites – could occur as early as late April or early May.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

SpaceX shades airline for seeking contract with Amazon’s Starlink rival

Published

on

Credit: Richard Angle

SpaceX employees, including its CEO Elon Musk, shaded American Airlines on social media this past weekend due to the company’s reported talks with Amazon’s Starlink rival, Leo.

Starlink has been adopted by several airlines, including United Airlines, Qatar Airways, Hawaiian Airlines, WestJet, Air France, airBaltic, and others. It has gained notoriety as an extremely solid, dependable, and reliable option for airline travel, as traditional options frequently cause users to lose connection to the internet.

Many airlines have made the switch, while others continue to mull the options available to them. American Airlines is one of them.

A report from Bloomberg indicates the airline is thinking of going with a Starlink rival owned by Amazon, called Leo. It was previously referred to as Project Kuiper.

American CEO Robert Isom said (via Bloomberg):

“While there’s Starlink, there are other low-Earth-orbit satellite opportunities that we can look at. We’re making sure that American is going to have what our customers need.”

Isom also said American has been in touch with Amazon about installing Leo on its aircraft, but he would not reveal the status of any discussions with the company.

The report caught the attention of Michael Nicolls, the Vice President of Starlink Engineering at SpaceX, who said:

“Only fly on airlines with good connectivity… and only one source of good connectivity at the moment…”

CEO Elon Musk replied to Nicolls by stating that American Airlines risks losing “a lot of customers if their connectivity solution fails.”

There are over 8,000 Starlink satellites in orbit currently, offering internet coverage in over 150 countries and territories globally. SpaceX expands its array of satellites nearly every week with launches from California and Florida, aiming to offer internet access to everyone across the globe.

SpaceX successfully launches 100th Starlink mission of 2025

Currently, the company is focusing on expanding into new markets, such as Africa and Asia.

Continue Reading

News

Tesla hints at Starlink integration with recent patent

“By employing polymer blends, some examples enable RF transmission from all the modules to satellites and other communication devices both inside and outside the vehicle.”

Published

on

Credit: Grok

Tesla hinted at a potential Starlink internet terminal integration within its vehicles in a recent patent, which describes a vehicle roof assembly with integrated radio frequency (RF) transparency.

The patent, which is Pub. No U.S. 2025/0368267 describes a new vehicle roof that is made of RF-transparent polymer materials, allowing and “facilitating clear communication with external devices and satellites.”

Tesla believes that a new vehicle roof design, comprised of different materials than the standard metallic or glass elements used in cars today, would allow the company to integrate modern vehicular technologies, “particularly those requiring radio frequency transmission and reception.

Instead of glass or metallic materials, Tesla says vehicles may benefit from high-strength polymer blends, such as Polycarbonate, Acrylonitrile Butadiene Styrene, or Acrylonitrile Styrene Acrylate.

These materials still provide ideal strength metrics for crashworthiness, stiffness for noise, vibration, and harshness control, and are compliant with head impact regulations.

They would also enable better performance with modern technologies, like internet terminals, which need an uninterrupted signal to satellites for maximum reception. Tesla writes in the patent:

“By employing polymer blends, some examples enable RF transmission from all the modules to satellites and other communication devices both inside and outside the vehicle.”

One of the challenges Tesla seems to be aware of with this type of roof design is the fact that it will still have to enable safety and keep that at the forefront of the design. As you can see in the illustration above, Tesla plans to use four layers to increase safety and rigidity, while also combating noise and vibration.

It notes in the patent that disclosed examples still meet the safety requirements outlined in the Federal Motor Vehicle Safety Standards (FMVSS).

Starlink integrated directly into Tesla vehicles would be a considerable advantage for owners. It would come with a handful of distinct advantages.

Initially, the inclusion of Starlink would completely eliminate cellular dead zones, something that is an issue, especially in rural areas. Starlink would provide connectivity in these remote regions and would ensure uninterrupted service during road trips and off-grid adventures.

It could also be a critical addition for Robotaxi, as it is crucial to have solid and reliable connectivity for remote monitoring and fleet management.

Starlink’s growing constellation, thanks to SpaceX’s routine and frequent launch schedule, will provide secure, stable, and reliable internet connectivity for Tesla vehicles.

SpaceX reaches incredible milestone with Starlink program

Although many owners have already mounted Starlink Mini dishes under their glass roofs for a similar experience, it may be integrated directly into Teslas in the coming years, either as an upgrade or a standard feature.

Continue Reading

Investor's Corner

SpaceX IPO is coming, CEO Elon Musk confirms

However, it appears Musk is ready for SpaceX to go public, as Ars Technica Senior Space Editor Eric Berger wrote an op-ed that indicated he thought SpaceX would go public soon. Musk replied, basically confirming it.

Published

on

elon musk side profile
Joel Kowsky, Public domain, via Wikimedia Commons

Elon Musk confirmed through a post on X that a SpaceX initial public offering (IPO) is on the way after hinting at it several times earlier this year.

It also comes one day after Bloomberg reported that SpaceX was aiming for a valuation of $1.5 trillion, adding that it wanted to raise $30 billion.

Musk has been transparent for most of the year that he wanted to try to figure out a way to get Tesla shareholders to invest in SpaceX, giving them access to the stock.

He has also recognized the issues of having a public stock, like litigation exposure, quarterly reporting pressures, and other inconveniences.

However, it appears Musk is ready for SpaceX to go public, as Ars Technica Senior Space Editor Eric Berger wrote an op-ed that indicated he thought SpaceX would go public soon.

Musk replied, basically confirming it:

Berger believes the IPO would help support the need for $30 billion or more in capital needed to fund AI integration projects, such as space-based data centers and lunar satellite factories. Musk confirmed recently that SpaceX “will be doing” data centers in orbit.

AI appears to be a “key part” of SpaceX getting to Musk, Berger also wrote. When writing about whether or not Optimus is a viable project and product for the company, he says that none of that matters. Musk thinks it is, and that’s all that matters.

It seems like Musk has certainly mulled something this big for a very long time, and the idea of taking SpaceX public is not just likely; it is necessary for the company to get to Mars.

The details of when SpaceX will finally hit that public status are not known. Many of the reports that came out over the past few days indicate it would happen in 2026, so sooner rather than later.

But there are a lot of things on Musk’s plate early next year, especially with Cybercab production, the potential launch of Unsupervised Full Self-Driving, and the Roadster unveiling, all planned for Q1.

Continue Reading