Connect with us

SpaceX

SpaceX’s Starlink satellites may use unique solar array deployment mechanism

Published

on

Spotted on an official SpaceX T-shirt commemorating Starlink’s first two prototype satellites and corroborated through analysis of limited public photos of the spacecraft, SpaceX appears to be testing a relatively unique style of solar arrays on the first two satellites launched into orbit, known as Tintin A (Alice) and B (Bob).

It’s difficult to judge anything concrete from the nature of what may be immature prototypes, but SpaceX’s decision to take a major step away from its own style of solar expertise – Cargo Dragon’s traditional rigid panel arrays – is almost certainly motivated by a need to push beyond the current state of the art of satellite design and production.

Unlike any discernible solar panel deployment mechanism with a flight history, SpaceX’s Starlink engineers seem to have taken a style of deployment used successfully on the International Space Station and mixed it with a modern style of solar arrays, relying on several flexible panels that can be efficiently packed together and designed to be extremely lightweight. While a major departure from SpaceX’s successful Cargo Dragon solar arrays, the mechanisms visible on the Tintins seem to have the potential to improve upon the packing efficiency, ease of manufacturing, and number of failure modes present on Dragon’s panels.

Advertisement

In essence, those three motivations are indicative of the challenges SpaceX’s Starlink program must solve in a more general sense. In order to even approach SpaceX’s operational aspirations for Starlink (i.e. high-speed internet delivered from space almost anywhere on Earth), the company will need to find ways to mass-produce hundreds or thousands of high-performance satellites annually at a price-per-unit unprecedented in the history of commercial satellites, all while keeping the weight and volume of each satellite as low as possible (no more than a few hundred kilograms).

To give an idea of where the industry currently stands, satellite internet provider Viasat launched its own Viasat-2 spacecraft in 2017. Weighing in around 6500 kg (14300 lb), the immense satellite cost at least $600 million and offers an instantaneous bandwidth of 300 gigabits per second, impressive but also gobsmackingly expensive at $2 million/Gbps. To ever hope to make Starlink a reality, SpaceX will need to beat that value by at least a factor of 5-10, producing Starlink satellites for no more than $1-3 million apiece ($4.5B-$13.5B alone to manufacture the initial 4,425 satellite constellation) with a bandwidth of 20 Gbps – baselined in official statements.

Compared to the state of the art, a $1 million satellite with optical (laser) interlinks, multiple phased array antennae, electric ion propulsion, two 1-2 kW solar arrays, and bandwidth on the order of 20 Gbps is – to put it nicely – wildly ambitious. Fundamentally, SpaceX will need to revolutionize design and mass-production of all of the above subcomponents, and perhaps the unfamiliar solar arrays present on the Tintin twins are a first step towards tackling at least one of those revolutions-in-waiting.

Advertisement

According to CEO Elon Musk, another set of prototype satellites will likely be launched and tested in orbit before settling on a finalized Starlink design.


For prompt updates, on-the-ground perspectives, and unique glimpses of SpaceX’s rocket recovery fleet check out our brand new LaunchPad and LandingZone newsletters!

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

SpaceX strengthens manufacturing base with Hexagon Purus aerospace deal

The deal adds composite pressure vessel expertise to SpaceX’s growing in-house supply chain.

Published

on

Credit: SpaceX

SpaceX has acquired an aerospace business from Hexagon Purus ASA in a deal worth up to $15 million. The deal adds composite pressure vessel expertise to SpaceX’s growing in-house supply chain.

As per Hexagon Purus ASA in a press release, SpaceX has agreed to purchase its wholly owned subsidiary, Hexagon Masterworks Inc. The subsidiary supplies high-pressure composite storage cylinders for aerospace and space launch applications, as well as hydrogen mobility applications. Masterworks’ hydrogen business is not part of the deal. 

The transaction covers the sale of 100% of Masterworks’ shares and values the business at approximately $15 million. The deal includes $12.5 million in cash payable at closing and up to $2.5 million in contingent earn-out payments, subject to customary conditions and adjustments.

Hexagon Purus stated that its aerospace unit has reached a stage where ownership by a company with a dedicated aerospace focus would best support its next phase of growth, a role SpaceX is expected to fill by integrating Masterworks into its long-term supply chain.

Advertisement

The divestment is also part of Hexagon Purus’ broader portfolio review. The company stated that it does not expect hydrogen mobility in North America to represent a meaningful growth opportunity in the near to medium term, and that the transaction will strengthen its financial position and extend its liquidity runway.

“I am pleased that we have found a new home for Masterworks with an owner that views our composite cylinder expertise as world-class and intends to integrate the business into its supply chain to support its long-term growth,” Morten Holum, CEO of Hexagon Purus, stated.

“I want to sincerely thank the Masterworks team for their dedication and hard work in developing the business to this point. While it is never easy to part with a business that has performed well, this transaction strengthens Hexagon Purus’ financial position and allows us to focus on our core strategic priorities.”

Continue Reading

News

Starlink goes mainstream with first-ever SpaceX Super Bowl advertisement

SpaceX used the Super Bowl broadcast to promote Starlink, pitching the service as fast, affordable broadband available across much of the world.

Published

on

Credit: Starlink/X

SpaceX aired its first-ever Super Bowl commercial on Sunday, marking a rare move into mass-market advertising as it seeks to broaden adoption of its Starlink satellite internet service.

Starlink Super Bowl advertisement

SpaceX used the Super Bowl broadcast to promote Starlink, pitching the service as fast, affordable broadband available across much of the world.

The advertisement highlighted Starlink’s global coverage and emphasized simplified customer onboarding, stating that users can sign up for service in minutes through the company’s website or by phone in the United States.

The campaign comes as SpaceX accelerates Starlink’s commercial expansion. The satellite internet service grew its global user base in 2025 to over 9 million subscribers and entered several dozen additional markets, as per company statements.

Advertisement

Starlink growth and momentum

Starlink has seen notable success in numerous regions across the globe. Brazil, in particular, has become one of Starlink’s largest growth regions, recently surpassing one million users, as per Ookla data. The company has also expanded beyond residential broadband into aviation connectivity and its emerging direct-to-cellular service.

Starlink has recently offered aggressive promotions in select regions, including discounted or free hardware, waived installation fees, and reduced monthly pricing. Some regions even include free Starlink Mini for select subscribers. In parallel, SpaceX has introduced AI-driven tools to streamline customer sign-ups and service selection.

The Super Bowl appearance hints at a notable shift for Starlink, which previously relied largely on organic growth and enterprise contracts. The ad suggests SpaceX is positioning Starlink as a mainstream alternative to traditional broadband providers.

Continue Reading

Elon Musk

Celebrating SpaceX’s Falcon Heavy Tesla Roadster launch, seven years later (Op-Ed)

Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”

Published

on

SpaceX's first Falcon Heavy launch also happened to be a strategic and successful test of Falcon upper stage coast capabilities. (SpaceX)

When Falcon Heavy lifted off in February 2018 with Elon Musk’s personal Tesla Roadster as its payload, SpaceX was at a much different place. So was Tesla. It was unclear whether Falcon Heavy was feasible at all, and Tesla was in the depths of Model 3 production hell.

At the time, Tesla’s market capitalization hovered around $55–60 billion, an amount critics argued was already grossly overvalued. SpaceX, on the other hand, was an aggressive private launch provider known for taking risks that traditional aerospace companies avoided.

The Roadster launch was bold by design. Falcon Heavy’s maiden mission carried no paying payload, no government satellite, just a car drifting past Earth with David Bowie playing in the background. To many, it looked like a stunt. For Elon Musk and the SpaceX team, it was a bold statement: there should be some things in the world that simply inspire people.

Inspire it did, and seven years later, SpaceX and Tesla’s results speak for themselves.

Advertisement
Credit: SpaceX

Today, Tesla is the world’s most valuable automaker, with a market capitalization of roughly $1.54 trillion. The Model Y has become the best-selling car in the world by volume for three consecutive years, a scenario that would have sounded insane in 2018. Tesla has also pushed autonomy to a point where its vehicles can navigate complex real-world environments using vision alone.

And then there is Optimus. What began as a literal man in a suit has evolved into a humanoid robot program that Musk now describes as potential Von Neumann machines: systems capable of building civilizations beyond Earth. Whether that vision takes decades or less, one thing is evident: Tesla is no longer just a car company. It is positioning itself at the intersection of AI, robotics, and manufacturing.

SpaceX’s trajectory has been just as dramatic.

The Falcon 9 has become the undisputed workhorse of the global launch industry, having completed more than 600 missions to date. Of those, SpaceX has successfully landed a Falcon booster more than 560 times. The Falcon 9 flies more often than all other active launch vehicles combined, routinely lifting off multiple times per week.

Falcon Heavy successfully clears the tower after its maiden launch, February 6, 2018. (Tom Cross)

Falcon 9 has ferried astronauts to and from the International Space Station via Crew Dragon, restored U.S. human spaceflight capability, and even stepped in to safely return NASA astronauts Butch Wilmore and Suni Williams when circumstances demanded it.

Starlink, once a controversial idea, now dominates the satellite communications industry, providing broadband connectivity across the globe and reshaping how space-based networks are deployed. SpaceX itself, following its merger with xAI, is now valued at roughly $1.25 trillion and is widely expected to pursue what could become the largest IPO in history.

Advertisement

And then there is Starship, Elon Musk’s fully reusable launch system designed not just to reach orbit, but to make humans multiplanetary. In 2018, the idea was still aspirational. Today, it is under active development, flight-tested in public view, and central to NASA’s future lunar plans.

In hindsight, Falcon Heavy’s maiden flight with Elon Musk’s personal Tesla Roadster was never really about a car in space. It was a signal that SpaceX and Tesla were willing to think bigger, move faster, and accept risks others wouldn’t.

The Roadster is still out there, orbiting the Sun. Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”

Advertisement
Continue Reading