News
SpaceX’s Starship booster-catching ‘launch tower’ begins to take shape in Texas
Aerial photos show that SpaceX has rapidly begun building the first of two planned skyscraper-sized Starship ‘launch towers’ in South Texas – towers that could one day catch the Super Heavy boosters out of the air with huge arms.
CEO Elon Musk first revealed that outlandish Starship booster recovery plan around the turn of the year, followed three months later by an even wilder claim that the same booster-catching tower could also catch Starships. Around the time the idea was first floated, SpaceX was beginning to build one of two planned towers that might be outfitted with arms in the future. Progress was mostly invisible at first, hinted at only by the presence of a self-propelled drill and a few muddy holes in the right spot.
By mid-March, SpaceX had begun clearing away some of the dirt on top, revealing a beefy foundation with 25 two-foot-thick (~1m) piles buried at least 100 ft (30m) deep in the sandy wetlands. Two weeks later, the foundation has been encased in concrete and the framework for massive base is nearly ready for its first concrete pour.
In other words, SpaceX’s first South Texas launch tower has just begun to take shape and grow vertically. First and foremost, its purpose is to provide an extremely sturdy base with which SpaceX can install Super Heavy boosters on the launch mount and then install Starships on top of those boosters. Standing at least 122 meters (~395 ft) tall from tip to tail without even accounting for the launch mount/stand Starship will attach to, that seemingly simple task ends up being not so simple at all.
Situated less than a mile from the Gulf of Mexico, Boca Chica is typically an extremely windy environment at sea level – let alone hundreds of feet above ground – and the South Texas coast is almost constantly at risk of torrential rain, thunderstorms, hurricanes, and flooding. As far as building giant, sturdy towers and performing work as sensitive and precise as vertically mating rocket stages, it’s hard to imagine a viable launch site with less favorable conditions short of Siberia or the Russian steppe.
According to Musk, SpaceX’s Boca Chica launch tower will have a “hook height” (the distance from the crane hook to the ground) of at least 140m (~460 ft), meaning that the top of the tower’s crane will likely be 150-160m (490-520 ft) tall when configured to mate Starship to Super Heavy.
Beyond those general details and the occasional official SpaceX render of possible launch facilities, not much else is known about how Boca Chica’s launch tower will look and function, particularly with respect to vague plans to catch Super Heavy boosters. However, SpaceX appears to have aggressively turned its attention to building out Boca Chica’s first orbital launch facilities and the progress made in the last two months suggests that it wont be long before what was recently a dirt apron will be ready to support Starship and Super Heavy testing.


According to Musk, SpaceX’s internal goal is to attempt Starship and Super Heavy’s first orbital launch as early as July 2021. If the company continues to work around the clock on rocket’s orbital launch site as it has for the last two months, it’s far from inconceivable that the pad will be ready for that orbital launch debut even if Starship is not. Stay tuned for more updates as the pad and launch tower continue to take shape.
Elon Musk
SpaceX Starship Version 3 booster crumples in early testing
Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.
SpaceX’s new Starship first-stage booster, Booster 18, suffered major damage early Friday during its first round of testing in Starbase, Texas, just one day after rolling out of the factory.
Based on videos of the incident, the lower section of the rocket booster appeared to crumple during a pressurization test. Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.
Booster test failure
SpaceX began structural and propellant-system verification tests on Booster 18 Thursday night at the Massey’s Test Site, only a few miles from Starbase’s production facilities, as noted in an Ars Technica report. At 4:04 a.m. CT on Friday, a livestream from LabPadre Space captured the booster’s lower half experiencing a sudden destructive event around its liquid oxygen tank section. Post-incident images, shared on X by @StarshipGazer, showed notable deformation in the booster’s lower structure.
Neither SpaceX nor Elon Musk had commented as of Friday morning, but the vehicle’s condition suggests it is likely a complete loss. This is quite unfortunate, as Booster 18 is already part of the Starship V3 program, which includes design fixes and upgrades intended to improve reliability. While SpaceX maintains a rather rapid Starship production line in Starbase, Booster 18 was generally expected to validate the improvements implemented in the V3 program.
Tight deadlines
SpaceX needs Starship boosters and upper stages to begin demonstrating rapid reuse, tower catches, and early operational Starlink missions over the next two years. More critically, NASA’s Artemis program depends on an on-orbit refueling test in the second half of 2026, a requirement for the vehicle’s expected crewed lunar landing around 2028.
While SpaceX is known for diagnosing failures quickly and returning to testing at unmatched speed, losing the newest-generation booster at the very start of its campaign highlights the immense challenge involved in scaling Starship into a reliable, high-cadence launch system. SpaceX, however, is known for getting things done quickly, so it would not be a surprise if the company manages to figure out what happened to Booster 18 in the near future.
News
Tesla FSD (Supervised) is about to go on “widespread” release
In a comment last October, Elon Musk stated that FSD V14.2 is “for widespread use.”
Tesla has begun rolling out Full Self-Driving (Supervised) V14.2, and with this, the wide release of the system could very well begin.
The update introduces a new high-resolution vision encoder, expanded emergency-vehicle handling, smarter routing, new parking options, and more refined driving behavior, among other improvements.
FSD V14.2 improvements
FSD (Supervised) V14.2’s release notes highlight a fully upgraded neural-network vision encoder capable of reading higher-resolution features, giving the system improved awareness of emergency vehicles, road obstacles, and even human gestures. Tesla also expanded its emergency-vehicle protocols, adding controlled pull-overs and yielding behavior for police cars, fire trucks, and ambulances, among others.
A deeper integration of navigation and routing into the vision network now allows the system to respond to blocked roads or detours in real time. The update also enhances decision-making in several complex scenarios, including unprotected turns, lane changes, vehicle cut-ins, and interactions with school buses. All in all, these improvements should help FSD (Supervised) V14.2 perform in a very smooth and comfortable manner.
Elon Musk’s predicted wide release
The significance of V14.2 grows when paired with Elon Musk’s comments from October. While responding to FSD tester AI DRIVR, who praised V14.1.2 for fixing “95% of indecisive lane changes and braking” and who noted that it was time for FSD to go on wide release, Musk stated that “14.2 for widespread use.”
FSD V14 has so far received a substantial amount of positive reviews from Tesla owners, many of whom have stated that the system now drives better than some human drivers as it is confident, cautious, and considerate at the same time. With V14.2 now rolling out, it remains to be seen if the update also makes it to the company’s wide FSD fleet, which is still populated by a large number of HW3 vehicles.
News
Tesla FSD V14.2 starts rolling out to initial batch of vehicles
It would likely only be a matter of time before FSD V14.2 videos are posted and shared on social media.
Tesla has begun pushing Full Self-Driving (Supervised) v14.2 to its initial batch of vehicles. The update was initially observed by Tesla owners and veteran FSD users on social media platform X on Friday.
So far, reports of the update have been shared by Model Y owners in California whose vehicles are equipped with the company’s AI4 hardware, though it would not be surprising if more Tesla owners across the country receive the update as well.
Based on the release notes of the update, key improvements in FSD V14.2 include a revamped neural network for better detection of emergency vehicles, obstacles, and human gestures, as well as options to select arrival spots.
It would likely only be a matter of time before FSD V14.2 videos are posted and shared on social media.
Following are the release notes of FSD (Supervised) V14.2, as shared on X by longtime FSD tester Whole Mars Catalog.


Release Notes
2025.38.9.5
Currently Installed
FSD (Supervised) v14.2
Full Self-Driving (Supervised) v14.2 includes:
- Upgraded the neural network vision encoder, leveraging higher resolution features to further improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
- Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
- Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances.
- Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
- Added additional Speed Profile to further customize driving style preference.
- Improved handling for static and dynamic gates.
- Improved offsetting for road debris (e.g. tires, tree branches, boxes).
- Improve handling of several scenarios including: unprotected turns, lane changes, vehicle cut-ins, and school busses.
- Improved FSD’s ability to manage system faults and improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
- Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
- Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances).
- Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
- Added additional Speed Profile to further customize driving style preference.
- Improved handling for static and dynamic gates.
- Improved offsetting for road debris (e.g. tires, tree branches, boxes).
- Improve handling of several scenarios, including unprotected turns, lane changes, vehicle cut-ins, and school buses.
- Improved FSD’s ability to manage system faults and recover smoothly from degraded operation for enhanced reliability.
- Added alerting for residue build-up on interior windshield that may impact front camera visibility. If affected, visit Service for cleaning!
Upcoming Improvements:
- Overall smoothness and sentience
- Parking spot selection and parking quality