Connect with us

News

SpaceX Starship destroyed during cryo test but the next ship is already on the way

LabPadre's 24/7 livestream captured Starship SN3's final moments in spectacular detail. The cause of the ship's failure is unknown. (LabPadre)

Published

on

SpaceX’s third full-scale Starship prototype has followed a little too closely in the footsteps of its predecessors, suffering a catastrophic failure during its first cryogenic test.

On April 2nd, SpaceX successfully put Starship SN3 through an ambient temperature pressure, allowing the ship to take its first breaths and ensuring that no leaks were present in its massive propellant tanks. Just a handful of hours later, Starship SN3 began its first attempted cryogenic proof test. Neutral liquid nitrogen was loaded into the ship’s liquid oxygen (LOX) tank for a brief period before SpaceX aborted the test due to frozen valves in the ground support equipment (GSE) tasked with feeding the rocket — confirmed by CEO Elon Musk around 7:30 pm PDT.

Around six hours after the first attempt, SpaceX presumably managed to alleviate GSE valve issues and began Starship SN3’s second attempted cryogenic proof test around 11pm local (04:00 UTC). While things started out somewhat normally, they did not end well for the rocket prototype.

The shiny aftermath of Starship SN3’s test failure. (LabPadre)

For unknown reasons, SpaceX began the second cryo test attempt by only loading Starship’s upper (LOX) tank with supercool liquid nitrogen. Given that Starship is constructed out of stainless steel sheets only slightly thicker than two US quarters, the lower (methane) tank would have almost certainly had to be pressurized, too, likely relying on gaseous (ambient temperature) nitrogen. Already, for a rocket built out of near-continuous metal, that temperature differential could pose a major problem.

Still, for the better part of three hours, things seemed to go exactly as planned, with the rocket venting dozens of times and the upper tank visibly developing a coating of frost as it began to freeze the water vapor right out of the humid Texas air. Alas, around 2:07am local (07:07 UTC), things took a turn for the worse. The unfilled methane tank below the now-LN2-laden LOX tank appeared to crumple, beginning at a small dent that appeared over the course of the test. Gravity took over a few seconds later, further crumpling the methane tank and causing the top-heavy rocket to tip over and the LOX tank to burst.

While admittedly from the armchair, not a lot of this particular failure makes sense. If the bottom methane tank were significantly pressurized with gaseous nitrogen, a rapid loss of structural integrity would have likely been a far more violent ordeal as the gas attempted to escape. Instead, the failure was – relative to the possibilities – extremely gradual. In fact, it almost appeared as if the bottom methane tank was either never actually pressurized or not pressurized nearly enough to withstand the weight of several hundred tons of liquid nitrogen. Given SpaceX’s expertise and familiarity with rocketry, that option thankfully seems vanishingly unlikely.

Advertisement
-->

All other possible explanations are at least as hard to parse, leaving it up to SpaceX or CEO Elon Musk to clarify what transpired if they choose to do so.

A steel Starship ring is transported on March 31st. (NASASpaceflight – bocachicagal)
On April 2nd, SpaceX began integrating Starship SN4’s upper LOX tank dome with three steel rings. (NASASpaceflight – bocachicagal)

On a more positive note, SpaceX has continued to churn out steel rings and bulkheads and assemble them into sections of Starship SN4 – the rocket’s next full-scale prototype – for the last two or so weeks. If Starship SN1, SN2, and SN3 are anything to go by, the fourth full-scale Starship prototype could be ready to head to the pad for testing just a handful of weeks from now, picking up where Starship SN3 left off. Thankfully, the latter rocket’s April 3rd failure appears to have been relatively benign as far as pad hardware goes, likely requiring minimal repair work to be ready for its next test campaign.

While unfortunate, it’s critical to remember that this is all part of SpaceX’s approach to developing new and unprecedented technologies. Be it Falcon 1, Falcon 9 booster recovery, or Falcon 9 fairing recovery, all groundbreaking SpaceX efforts have begun with several consecutive failures before the first successes – and the first streaks of consecutive successes. Given Musk’s September 2019 claim that SpaceX is putting just ~5% of its resources into Starship, prototypes like Mk1, SN1, and SN3 are being fabricated for pennies on the dollar.

As a schedule setback, SpaceX is building ships so quickly that any single prototype failure shouldn’t cause more than a handful of weeks of delays, and the goal is to produce an entire Starship every week by the end of 2020. For now, SpaceX will hopefully learn from each failure during developmental testing and roll those lessons learned into each future prototype.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Elon Musk’s Grok AI to be used in U.S. War Department’s bespoke AI platform

The partnership aims to provide advanced capabilities to 3 million military and civilian personnel.

Published

on

Credit: xAI

The U.S. Department of War announced Monday an agreement with Elon Musk’s xAI to embed the company’s frontier artificial intelligence systems, powered by the Grok family of models, into the department’s bespoke AI platform GenAI.mil. 

The partnership aims to provide advanced capabilities to 3 million military and civilian personnel, with initial deployment targeted for early 2026 at Impact Level 5 (IL5) for secure handling of Controlled Unclassified Information.

xAI Integration

As noted by the War Department’s press release, GenAI.mil, its bespoke AI platform, will gain xAI for the Government’s suite of tools, which enable real-time global insights from the X platform for “decisive information advantage.” The rollout builds on xAI’s July launch of products for U.S. government customers, including federal, state, local, and national security use cases.

“Targeted for initial deployment in early 2026, this integration will allow all military and civilian personnel to use xAI’s capabilities at Impact Level 5 (IL5), enabling the secure handling of Controlled Unclassified Information (CUI) in daily workflows. Users will also gain access to real‑time global insights from the X platform, providing War Department personnel with a decisive information advantage,” the Department of War wrote in a press release. 

Strategic advantages

The deal marks another step in the Department of War’s efforts to use cutting-edge AI in its operations. xAI, for its part, highlighted that its tools can support administrative tasks at the federal, state and local levels, as well as “critical mission use cases” at the front line of military operations.

Advertisement
-->

“The War Department will continue scaling an AI ecosystem built for speed, security, and decision superiority. Newly IL5-certified capabilities will empower every aspect of the Department’s workforce, turning AI into a daily operational asset. This announcement marks another milestone in America’s AI revolution, and the War Department is driving that momentum forward,” the War Department noted.

Continue Reading

News

Tesla FSD (Supervised) v14.2.2 starts rolling out

The update focuses on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing, among other improvements.

Published

on

Credit: Grok Imagine

Tesla has started rolling out Full Self-Driving (Supervised) v14.2.2, bringing further refinements to its most advanced driver-assist system. The new FSD update focuses on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing, among other improvements.

Key FSD v14.2.2 improvements

As noted by Not a Tesla App, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures. New Arrival Options let users select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the user’s ideal spot for precision.

Other additions include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and extreme Speed Profiles for customized driving styles. Reliability gains cover fault recovery, residue alerts on the windshield, and automatic narrow-field camera washing for new 2026 Model Y units.

FSD v14.2.2 also boosts unprotected turns, lane changes, cut-ins, and school bus scenarios, among other things. Tesla also noted that users’ FSD statistics will be saved under Controls > Autopilot, which should help drivers easily view how much they are using FSD in their daily drives.  

Key FSD v14.2.2 release notes

Full Self-Driving (Supervised) v14.2.2 includes:

Advertisement
-->
  • Upgraded the neural network vision encoder, leveraging higher resolution features to further improve scenarios like handling emergency vehicles, obstacles on the road, and human gestures.
  • Added Arrival Options for you to select where FSD should park: in a Parking Lot, on the Street, in a Driveway, in a Parking Garage, or at the Curbside.
  • Added handling to pull over or yield for emergency vehicles (e.g. police cars, fire trucks, ambulances).
  • Added navigation and routing into the vision-based neural network for real-time handling of blocked roads and detours.
  • Added additional Speed Profile to further customize driving style preference.
  • Improved handling for static and dynamic gates.
  • Improved offsetting for road debris (e.g. tires, tree branches, boxes).
  • Improve handling of several scenarios, including unprotected turns, lane changes, vehicle cut-ins, and school buses.
  • Improved FSD’s ability to manage system faults and recover smoothly from degraded operation for enhanced reliability.
  • Added alerting for residue build-up on interior windshield that may impact front camera visibility. If affected, visit Service for cleaning!
  • Added automatic narrow field washing to provide rapid and efficient front camera self-cleaning, and optimize aerodynamics wash at higher vehicle speed.
  • Camera visibility can lead to increased attention monitoring sensitivity. 

Upcoming Improvements:

  • Overall smoothness and sentience.
  • Parking spot selection and parking quality.
Continue Reading

News

Tesla is not sparing any expense in ensuring the Cybercab is safe

Images shared by the longtime watcher showed 16 Cybercab prototypes parked near Giga Texas’ dedicated crash test facility.

Published

on

Credit: @JoeTegtmeyer/X

The Tesla Cybercab could very well be the safest taxi on the road when it is released and deployed for public use. This was, at least, hinted at by the intensive safety tests that Tesla seems to be putting the autonomous two-seater through at its Giga Texas crash test facility. 

Intensive crash tests

As per recent images from longtime Giga Texas watcher and drone operator Joe Tegtmeyer, Tesla seems to be very busy crash testing Cybercab units. Images shared by the longtime watcher showed 16 Cybercab prototypes parked near Giga Texas’ dedicated crash test facility just before the holidays. 

Tegtmeyer’s aerial photos showed the prototypes clustered outside the factory’s testing building. Some uncovered Cybercabs showed notable damage and one even had its airbags engaged. With Cybercab production expected to start in about 130 days, it appears that Tesla is very busy ensuring that its autonomous two-seater ends up becoming the safest taxi on public roads. 

Prioritizing safety

With no human driver controls, the Cybercab demands exceptional active and passive safety systems to protect occupants in any scenario. Considering Tesla’s reputation, it is then understandable that the company seems to be sparing no expense in ensuring that the Cybercab is as safe as possible.

Tesla’s focus on safety was recently highlighted when the Cybertruck achieved a Top Safety Pick+ rating from the Insurance Institute for Highway Safety (IIHS). This was a notable victory for the Cybertruck as critics have long claimed that the vehicle will be one of, if not the, most unsafe truck on the road due to its appearance. The vehicle’s Top Safety Pick+ rating, if any, simply proved that Tesla never neglects to make its cars as safe as possible, and that definitely includes the Cybercab.

Advertisement
-->
Continue Reading