News
SpaceX’s Elon Musk hints at “notable” Starship changes, explains static fire anomaly
CEO Elon Musk has offered an explanation for SpaceX’s recent Starship static fire anomaly and says that an overview of the next-generation rocket development program will be delayed to account for some “notable” design changes.
Over the last several months, Musk has promised to do one of his (thus far) usual annual Starship updates, either in the form of a presentation in South Texas, an article published on SpaceX’s website, or both. Originally expected in September or October, the CEO’s tentative schedules have come and gone several times. Simultaneously, however, SpaceX has been preparing Starship serial number 8 (SN8) for a range of crucial tests and Starship program firsts, recently culminating in a successful cryogenic proof test, multiple wet dress rehearsals (WDRs), nosecone installation, the first triple-Raptor static fire test, engine tests using smaller ‘header’ tanks, and more.
Unfortunately for SN8, the most recent Raptor engine header static fire – drawing propellant from two small internal tanks mainly used for landing burns – did not go according to plan, resulting in some kind of high-temperature fire and severing Starship’s hydraulic systems. For SpaceX test controllers, that meant a total loss of control of most vehicle valves and pressurization systems, essentially putting one of Starship SN8’s header tanks through an unplanned pressure and failsafe test. In the days since, what exactly caused that unfortunate failure has been the subject of a great deal of discussion – discussion that can finally be put to rest with new information from Musk himself.
In a surprise, SpaceX had apparently decided to add a failsafe to Starship SN8’s new nose section, installing what is known as a burst disk – effectively an automatic single-use valve. Once the upper (liquid oxygen) header tank reached dangerous pressures, the force of that pressure broke the seal, allowing the rocket to vent excess pressure and avoid what would have otherwise been a potentially catastrophic explosion.
The cause of that near-miss, according to Elon Musk, was as simple as debris kicked up during the Starship SN8 Raptor engine static fire directly prior. Producing up to 200 metric tons (~450,000 lbf) of thrust and an exhaust stream traveling some 3.3 kilometers per second (2 mi/s, Mach ~10), Musk says that Raptor tore apart a special ceramic coating covering the concrete directly beneath Starship SN8. Likely accelerated to extreme velocities in milliseconds, shards of that coating reportedly “severed [an] avionics cable, causing [a] bad [Raptor engine shutdown].”


Prior to Musk’s comments, SpaceX technicians had already removed on of SN8’s three Raptors – SN32 – on November 14th and replaced it with Raptor SN42 on November 16th, effectively confirming that any damage suffered by Starship’s engine section was easily repairable. It’s unclear how exactly a single severed cable could result in a Raptor engine seemingly dripping molten metal but regardless of the cause, the fix appears to have been a quick one.

In response to the anomaly, Musk says that Starship avionics cables will ultimately be routed inside steel pipes to shield them from debris, while “water-cooled steel pipes” will be added to the launch pad to help limit the damage Raptors can cause. Perhaps as a partial result of SN8’s troubles at the launch pad, Musk says that his Starship blog post will have to wait, as SpaceX “[may be] making some notable changes” to the launch vehicle.
Prior to Starship SN8’s failed November 12th Raptor test, SpaceX was expected to attempt three consecutive static fires before clearing the rocket for an ambitious 15 km (9.5 mi) flight test. One of those static fires had already been completed on November 10th and it’s unclear if SpaceX’s SN8 test plan has remained unchanged or if the static fire counter has been effectively reset. Either way, barring more surprises, there’s still a definite possibility that Starship SN8 will be ready for its launch debut by the end of November and an even better chance that it will launch some time between now and 2021. Stay tuned for updates!
News
Tesla China rolls out Model 3 insurance subsidy through February
Eligible customers purchasing a Model 3 by February 28 can receive an insurance subsidy worth RMB 8,000 (about $1,150).
Tesla has rolled out a new insurance subsidy for Model 3 buyers in China, adding another incentive as the automaker steps up promotions in the world’s largest electric vehicle market.
Eligible customers purchasing a Model 3 by February 28 can receive an insurance subsidy worth RMB 8,000 (about $1,150).
A limited-time subsidy
The insurance subsidy, which was announced by Tesla China on Weibo, applies to the Model 3 RWD, Long Range RWD, and Long Range AWD variants. Tesla stated that the offer is available to buyers who complete their purchase on or before February 28, as noted in a CNEV Post report. The starting prices for these variants are RMB 235,500, RMB 259,500, and RMB 285,500, respectively.
The Tesla Model 3 Performance, which starts at RMB 339,500, is excluded from the subsidy. The company has previously used insurance incentives at the beginning of the year to address softer seasonal demand in China’s auto market. The program is typically phased out as sales conditions stabilize over the year.
China’s electric vehicle market
The insurance subsidy followed Tesla’s launch of a 7-year low-interest financing plan in China on January 6, which is aimed at improving vehicle affordability amid changing policy conditions. After Tesla introduced the financing program, several automakers, such as Xiaomi, Li Auto, Xpeng, and Voyah, introduced similar long-term financing options.
China’s electric vehicle market has faced additional headwinds entering 2026. Buyers of new energy vehicles are now subject to a 5% purchase tax, compared with the previous full exemption. At the same time, vehicle trade-in subsidies in several cities are expected to expire in mid-November.
Tesla’s overall sales in China declined in 2025, with deliveries totaling 625,698 vehicles, down 4.78% year-over-year. Model 3 deliveries increased 13.33% to 200,361 units, while Model Y deliveries, which were hampered by the changeover to the new Model Y in the first quarter, fell 11.45% to 425,337 units.
News
Tesla hiring Body Fit Technicians for Cybercab’s end of line
As per Tesla’s Careers website, Body Fit Technicians for the Cybercab focus on precision body fitment work, including alignment, gap and flush adjustments.
Tesla has posted job openings for Body Fit Technicians for the Cybercab’s end-of-line assembly, an apparent indication that preparations for the vehicle’s initial production are accelerating at Giga Texas.
Body Fit Technicians for Cybercab line
As per Tesla’s Careers website, Body Fit Technicians for the Cybercab focus on precision body fitment work, including alignment, gap and flush adjustments, and certification of body assemblies to specification standards.
Employees selected for the role will collaborate with engineering and quality teams to diagnose and correct fitment and performance issues and handle detailed inspections, among other tasks.
The listing noted that candidates should be experienced with automotive body fit techniques and comfortable with physically demanding tasks such as lifting, bending, walking, and using both hand and power tools. The position is based in Austin, Texas, where Tesla’s main Cybercab production infrastructure is being built.
Cybercab poised for April production
Tesla CEO Elon Musk recently reiterated that the Cybercab is still expected to start initial production this coming April. So far, numerous Cybercab test units have been spotted across the United States, and recent posts from the official Tesla Robotaxi account have revealed that winter tests in Alaska for the autonomous two-seater are underway.
While April has been confirmed as the date for the Cybercab’s initial production, Elon Musk has also set expectations about the vehicle’s volumes in its initial months. As per the CEO, the Cybercab’s production will follow a typical S-curve, which means that early production rates for the vehicle will be very limited.
“Initial production is always very slow and follows an S-curve. The speed of production ramp is inversely proportionate to how many new parts and steps there are. For Cybercab and Optimus, almost everything is new, so the early production rate will be agonizingly slow, but eventually end up being insanely fast,” Musk wrote in a post on X.
News
Swedish unions consider police report over Tesla Megapack Supercharger
The Tesla Megapack Supercharger opened shortly before Christmas in Arlandastad, outside Stockholm.
Swedish labor unions are considering whether to file a police report related to a newly opened Tesla Megapack Supercharger near Stockholm, citing questions about how electricity is supplied to the site. The matter has also been referred to Sweden’s energy regulator.
Tesla Megapack Supercharger
The Tesla Megapack Supercharger opened shortly before Christmas in Arlandastad, outside Stockholm. Unlike traditional charging stations, the site is powered by an on-site Megapack battery rather than a direct grid connection. Typical grid connections for Tesla charging sites in Sweden have seen challenges for nearly two years due to union blockades.
Swedish labor union IF Metall has submitted a report to the Energy Market Inspectorate, asking the authority to assess whether electricity supplied to the battery system meets regulatory requirements, as noted in a report from Dagens Arbete (DA). The Tesla Megapack on the site is charged using electricity supplied by a local company, though the specific provider has not been publicly identified.
Peter Lydell, an ombudsman at IF Metall, issued a comment about the Tesla Megapack Supercharger. “The legislation states that only companies that engage in electricity trading may supply electricity to other parties. You may not supply electricity without a permit, then you are engaging in illegal electricity trading. That is why we have reported this… This is about a company that helps Tesla circumvent the conflict measures that exist. It is clear that it is troublesome and it can also have consequences,” Lydell said.
Police report under consideration
The Swedish Electricians’ Association has also examined the Tesla Megapack Supercharger and documented its power setup. As per materials submitted to the Energy Market Inspectorate, electrical cables were reportedly routed from a property located approximately 500 meters from the charging site.
Tomas Jansson, ombudsman and deputy head of negotiations at the Swedish Electricians’ Association, stated that the union was assessing whether to file a police report related to the Tesla Megapack Supercharger. He also confirmed that the electricians’ union was coordinating with IF Metall about the matter. “We have a close collaboration with IF Metall, and we are currently investigating this. We support IF Metall in their fight for fair conditions at Tesla,” Jansson said.
