News
SpaceX’s first orbital Starship rocket engine is almost ready for testing
CEO Elon Musk says that SpaceX is “about a month away” from testing a rocket engine that will be essential for Starship and its Super Heavy booster to reach their full potential.
Known as Raptor Vacuum, the engine – as its name suggests – is a variant of the base Raptor engine optimized for maximum performance and efficiency in the vacuum of space. Although Starship could technically still function and likely reach orbit with only sea level-optimized Raptors installed, it would likely significantly limit the amount of payload it could carry into Earth orbit and would especially harm the ship’s performance to higher orbits and other planets.
Back in May 2019, Musk revealed that SpaceX had shifted gears again, forgoing a plan to begin orbital Starship flight operations with only sea level Raptors, gradually designing and phasing in RaptorVac engines much further down the road. Instead, SpaceX restarted (relatively) urgent work on the vacuum variant and Musk hinted that it would “aspirationally” be ready to support launches in the near term. A few weeks shy of a year later, Musk says that Raptor Vacuum testing could begin as early as June 2020.

For a variety of reasons, even if based directly off of an existing design, vacuum-optimized engines are typically much more complex than a comparable sea level variant. While efficiency is always relatively important for rocket engine design, it becomes even more paramount when dealing with vacuum rocketry, as the entire point of a dedicated vacuum-optimized engine is to eke as much efficiency as possible out of a launch vehicle’s orbital stage(s).

For example, even from a purely visual perspective, Merlin Vacuum (MVac) is substantially different when compared to the Merlin 1D engine it’s based on. Due to a number of major and largely unknown differences, the engines’ shared components are largely invisible. It’s unclear how similar they are but it’s safe to say that they share at least ~50% commonality. Obviously, the most apparent part of the difference between a vacuum-optimized engine and an atmosphere-optimized engine is the bell nozzle: MVac has a nozzle that is dramatically larger than M1D.
Raptor will be no different, with the sea-level variant featuring a nozzle about 1m (3.2 ft) in diameter, whereas RaptorVac’s bell will have a diameter closer to 2.5m (~8 ft). With SpaceX’s apparent May 2019 pivot back to working on RaptorVac now, the company has been working on a dedicated vacuum variant of the high-performance methane-oxygen engine for at least a full year. Now, perhaps beginning as early as June or July, Musk suggests that the first RaptorVac engine (SN0? SN1?) is almost ready to commence static fire testing.



The nature of that testing is a bit of a mystery. While it will almost certainly occur at SpaceX’s McGregor, Texas test and development facilities, it’s unclear if Raptor Vacuum’s first static fire test campaign will be attempted with the engine’s extended nozzle installed. Back in October 2019, Musk suggested that yes, Raptor Vacuum version 1.0 would have a nozzle small enough to operate at sea level without destroying itself or its test facilities. With Merlin Vacuum engines, SpaceX performs acceptance tests in Texas but only without their nozzle extensions installed. If Musk’s October 2019 comments remain true, that may not be the case for RaptorVac.
Either way, it will be thoroughly interesting to note the differences between RaptorVac and its sea level-optimized predecessor if or when Elon Musk or SpaceX releases photos of their newest engine as it nears its first major tests. Simultaneously, SpaceX is also readying a sea-level Raptor for its inaugural static fire test while attached to a full-scale Starship prototype, while the first test with three Raptor engines installed could be attempted just a few weeks from now.
News
Tesla Robotaxi fleet reaches new milestone that should expel common complaint
There have been many complaints in the eight months that the Robotaxi program has been active about ride availability, with many stating that they have been confronted with excessive wait times for a ride, as the fleet was very small at the beginning of its operation.
Tesla Robotaxi is active in both the Bay Area of California and Austin, Texas, and the fleet has reached a new milestone that should expel a common complaint: lack of availability.
It has now been confirmed by Robotaxi Tracker that the fleet of Tesla’s ride-sharing vehicles has reached 200, with 158 of those being available in the Bay Area and 42 more in Austin. Despite the program first launching in Texas, the company has more vehicles available in California.
The California area of operation is much larger than it is in Texas, and the vehicle fleet is larger because Tesla operates it differently; Safety Monitors sit in the driver’s seat in California while FSD navigates. In Texas, Safety Monitors sit in the passenger’s seat, but will switch seats when routing takes them on the highway.
Tesla has also started testing rides without any Safety Monitors internally.
Tesla Robotaxi goes driverless as Musk confirms Safety Monitor removal testing
This new milestone confronts a common complaint of Robotaxi riders in Austin and the Bay, which is vehicle availability.
There have been many complaints in the eight months that the Robotaxi program has been active about ride availability, with many stating that they have been confronted with excessive wait times for a ride, as the fleet was very small at the beginning of its operation.
I attempted to take a @robotaxi ride today from multiple different locations and time of day (from 9:00 AM to about 3:00 PM in Austin but never could do so.
I always got a “High Service Demand” message … I really hope @Tesla is about to go unsupervised and greatly plus up the… pic.twitter.com/IOUQlaqPU2
— Joe Tegtmeyer 🚀 🤠🛸😎 (@JoeTegtmeyer) November 26, 2025
With that being said, there have been some who have said wait times have improved significantly, especially in the Bay, where the fleet is much larger.
Robotaxi wait times here in Silicon Valley used to be around 15 minutes for me.
Over the past few days, they’ve been consistently under five minutes, and with scaling through the end of this year, they should drop to under two minutes. pic.twitter.com/Kbskt6lUiR
— Alternate Jones (@AlternateJones) January 6, 2026
Tesla’s approach to the Robotaxi fleet has been to prioritize safety while also gathering its footing as a ride-hailing platform.
Of course, there have been and still will be growing pains, but overall, things have gone smoothly, as there have been no major incidents that would derail the company’s ability to continue developing an effective mode of transportation for people in various cities in the U.S.
Tesla plans to expand Robotaxi to more cities this year, including Miami, Las Vegas, and Houston, among several others.
Elon Musk
Tesla announces closure date on widely controversial Full Self-Driving program
Tesla has said that it will officially bring closure to its free Full Self-Driving transfer program on March 31, 2026, giving owners until the end of the quarter to move their driving suite to another vehicle with no additional cost.
Tesla has officially announced a closure date for a widely controversial Full Self-Driving program, which has been among the most discussed pieces of the driving suite for years.
The move comes just after the company confirmed it would no longer offer the option to purchase the suite outright, instead opting for a subscription-based platform that will be available in mid-February.
Tesla has said that it will officially bring closure to its free Full Self-Driving transfer program on March 31, 2026, giving owners until the end of the quarter to move their driving suite to another vehicle with no additional cost.
NEWS: Tesla has started to inform customers in the U.S. that free FSD transfer will end on March 31, 2026.
Tesla has previously said free FSD transfers would end “that quarter,” but this is the first time in many quarters they’ve communicated a specific end date. Time will tell… pic.twitter.com/iCKDvGuBds
— Sawyer Merritt (@SawyerMerritt) January 18, 2026
After that date, Tesla owners who purchased the FSD suite outright will have to adopt the exclusive subscription-only program, which will be the only option available after February 14.
CEO Elon Musk announced earlier this month that Tesla would be ending the option to purchase Full Self-Driving outright, but the reasoning for this decision is unknown.
However, there has been a lot of speculation that Tesla could offer a new tiered program, which would potentially lower the price of the suite and increase the take rate.
Tesla is shifting FSD to a subscription-only model, confirms Elon Musk
Others have mentioned something like a pay-per-mile platform that would charge drivers based on usage, which seems to be advantageous for those who still love to drive their cars but enjoy using FSD for longer trips, as it can take the stress out of driving.
Moving forward, Tesla seems to be taking any strategy it can to increase the number of owners who utilize FSD, especially as it is explicitly mentioned in Musk’s new compensation package, which was approved last year.
Musk is responsible for getting at least 10 million active Full Self-Driving subscriptions in one tranche, while another would require the company to deliver 20 million vehicles cumulatively.
The current FSD take rate is somewhere around 12 percent, as the company revealed during the Q3 2025 Earnings Call. Tesla needs to bump this up considerably, and the move to rid itself of the outright purchase option seems to be a move to get things going in the right direction.
News
Tesla Model Y leads South Korea’s EV growth in 2025
Data from the Korea Automobile and Mobility Industry Association showed that the Tesla Model Y emerged as one of the segment’s single biggest growth drivers.
South Korea’s electric vehicle market saw a notable rise in 2025, with registrations rising more than 50% and EV penetration surpassing 10% for the first time.
Data from the Korea Automobile and Mobility Industry Association showed that the Tesla Model Y, which is imported from Gigafactory Shanghai, emerged as one of the segment’s single biggest growth drivers, as noted in a report from IT Home News.
As per the Korea Automobile and Mobility Industry Association’s (KAMA) 2025 Korea Domestic Electric Vehicle Market Settlement report, South Korea registered 220,177 new electric vehicles in 2025, a 50.1% year-over-year increase. EV penetration also reached 13.1% in the country, entering double digits for the first time.
The Tesla Model Y played a central role in the market’s growth. The Model Y alone sold 50,397 units during the year, capturing 26.6% of South Korea’s pure electric passenger vehicle market. Sales of the Giga Shanghai-built Model Y increased 169.2% compared with 2024, driven largely by strong demand for the all-electric crossover’s revamped version.
Manufacturer performance reflected a tightly contested market. Kia led with 60,609 EV sales, followed closely by Tesla at 59,893 units and Hyundai at 55,461 units. Together, the three brands accounted for nearly 80% of the country’s total EV sales, forming what KAMA described as a three-way competitive market.
Imported EVs gained ground in South Korea in 2025, reaching a market share of 42.8%, while the share of domestically produced EVs declined from 75% in 2022 to 57.2% last year. Sales of China-made EVs more than doubled year over year to 74,728 units, supported in no small part by Tesla and its Model Y.
Elon Musk, for his part, has praised South Korean customers and their embrace of the electric vehicler maker. In a reply on X to a user who noted that South Koreans are fond of FSD, Musk stated that, “Koreans are often a step ahead in appreciating new technology.”