Connect with us

SpaceX

SpaceX’s Starship prototype moved to launch pad on new rocket transporter

SpaceX moved its massive Starship prototype from build site to launch pad on March 8th, paving the way for the imminent beginning of static fires and tethered hop tests. (NASASpaceflight - bocachicagal)

Published

on

Over the last two or so weeks, SpaceX engineers and technicians have continued to make progress on the company’s first full-scale Starship prototype, intended to support experimental suborbital hop tests as early as March or April.

That work reached a peak on March 8th when the massive Starhopper was transported from build site to launch pad on a brand new transporter that was delivered and assembled barely 48 hours prior. Ahead of the suborbital prototype’s move, work has been ongoing to construct a replacement fairing for the partial-fidelity vehicle, although there is a chance that the new BFR-related stainless steel sections being assembled could be the start of the first orbital Starship prototype.

Required after improper planning destroyed Starship’s original nosecone (or fairing) when it broke free from its insufficient moorings during high coastal winds, the replacement has sprouted from sheets of metal into a far more substantial structure in barely two weeks. Designed as two integral parts of a suborbital Starship prototype, the upper section (i.e. fairing, nosecone, etc.) is predominately a passive aerodynamic structure with no major active functions, thankfully meaning that the first article’s accidental destruction was a relatively minor loss.

In fact, it’s entirely possible that the fairing’s demise has had a minimal impact on the commencement of hop tests, and may have even been a net-good for the program given some visible differences between Starship fairings #1 and #2. Despite the fact that the first fairing was destroyed in late January and a comment from CEO Elon Musk indicating that it would trigger a delay of a few weeks, SpaceX did not begin to assemble its replacement until February 21st, a full month later. Over the course of those 30 or so days, the company’s propulsion team simultaneously began hot-fire tests of the first full-scale Raptor engine, ramped thrust and chamber pressure from roughly 40 to 100 percent, and ultimately pushed the engine to the point of damage around the second week of February.

Work on the primary structure of the Starship prototype also proceeded apace, fleshing out the brute-force steel vehicle with the beginnings of serious avionics and plumbing and more or less completing the structure of its liquid oxygen and methane propellant tanks. SpaceX workers also rapidly expanded and built-out Starship’s prospective hop test launch pad just a few thousand feet distant, installing tank farms, piping, water deluge hardware, and building an actual concrete ‘pad’ with umbilical connection ports and attachment points for the ship’s three fin-legs.

On March 7th, Starhopper’s replacement fairing was lifted onto a concrete work stand, where curved sections will begin to be attached. (NASASpaceflight – bocachicagal)

Welding and assembly of the replacement nosecone began around February 21st, rapidly growing from a few sheets of steel to a nearly-complete barrel section measuring about 9m tall and 9m in diameter (30ft x 30ft). Intriguingly, the new fairing appears to be a significant departure from the structural composition of its predecessor, utilizing far thicker sheets of stainless steel joined by uninterrupted width and lengthwise welds. Compared to the first fairing’s dependence on extremely thin (nearly foil-like) steel sheets and a separate internal framework of metal bars, Starship fairing V2 appears to be easily capable of standing under its own weight and then some. While largely passive, it’s likely that once the structure is complete, some level of additional avionics (and perhaps cold or hot-gas maneuvering thrusters) will be installed inside.

U-Crawl

Keeping in the practice of dramatically lowering costs by prioritizing consumer off-the-shelf (COTS) hardware solutions wherever possible, SpaceX has purchased or leased a quartet of (likely used) crawlers for the purpose of transporting Starship between the company’s South Texas build, launch, and landing sites. Built by a European conglomerate known TII Group and owned by US-based Roll Group, SpaceX’s four crawlers – coupled to form a duo of larger crawlers – should be more than capable of transporting anywhere from 500t to 1000t or more, easily supporting Starhopper and/or Starships and Super Heavy boosters.

Advertisement
SpaceX accepted delivery of a quarter of crawlers on March 6th and immediately coupled them and began installing massive steel beams to form a Starship transporter. (NASASpaceflight – bocachicagal)

Rather than spending huge amounts of money to develop or contract out a custom-designed crawler or transporter solution for BFR, SpaceX appears to have simply purchased off-the-shelf hardware and affixed them with heavy steel structures capable of securing and supporting Starhopper during transport. Within 24 hours of the crawler arrivals, those beams were installed and the transporter had been moved underneath Starhopper and attached to it before quite literally jacking the massive ship off the ground, allowing technicians to weld additional structures to the tips of its three legs.

The latest addition to SpaceX’s fleet of rocket transporters, March 6th. (NASASpaceflight – bocachicagal)

Last but not least…

Perhaps most curious of all, Starhopper’s replacement fairing was recently joined by the start of work on a separate barrel section that appears to be nearly identical. Assuming the presumed fairing is, in fact, a fairing-to-be, the combined height of the two barrel sections would already make it significantly taller than the original nosecone, and the beginning of the conical taper has yet to appear on either assembly. This could generally mean one of two things. First, the new fairing could make Starhopper much taller than its short-lived predecessor. Second, SpaceX could be planning to begin (or even complete) hop tests without a fairing, in which case the presumed fairing and its slightly younger twin could actually be the beginning of a higher-fidelity Starhopper or even the orbital Starship prototype hinted at by Musk earlier this year.

While far less likely than the first option, the latter alternative is further supported by the fact that visible work has begun on some sort of tapered or curved steel complements to the new sections in work. While they certainly could be the beginning of the fairing’s tapered cone, the latest segments only loosely resemble the start of a gradual curve. Instead, they look similar to the steel segments of several giant tank domes that were assembled, welded, and installed inside Starhopper last month.

One of the latest curved sections of welded steel, March 7th. (NASASpaceflight – bocachicagal
Meanwhile, giant 9m-diameter tank domes are being assembled and welded together a few hundred feet away from Starhopper. (NSF – bocachicagal)

On March 8th, SpaceX began the transport of its first full-scale Starship prototype at the same time as CEO Elon Musk indicated that the first flightworthy Raptor(s) would be delivered to South Texas and installed on the hop test article as early as next week (March 11-17). It’s now looking increasingly likely that any replacement fairing that may or may not be under construction might not be ready for installation on Starhopper before SpaceX begins integrated static-fire tests and maybe even low-altitude tethered hop tests.

“SpaceX will conduct checkouts of the newly installed ground systems and perform a short static fire test in the days ahead,” he said. “Although the prototype is designed to perform sub-orbital flights, or hops, powered by the SpaceX Raptor engine, the vehicle will be tethered during initial testing and hops will not be visible from offsite. SpaceX will establish a safety zone perimeter in coordination with local enforcement and signage will be in place to alert the community prior to the testing.” – James Gleeson, March 8th, SpaceX

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

SpaceX to debut new Dragon capsule in Axiom Space launch

Ax-4’s launch marks the debut of SpaceX’s latest Crew Dragon and pushes Axiom closer to building its own space station.

Published

on

spacex-dragon-axiom-ax-4-mission-iss
(Credit: SpaceX)

Axiom Space’s Ax-4 mission targets the International Space Station (ISS) with a new SpaceX Crew Dragon capsule.

The Axiom team will launch a new SpaceX Dragon capsule atop a Falcon 9 rocket from NASA’s Kennedy Space Center in Florida on Wednesday at 8:00 a.m. EDT (1200 GMT). The Ax-4 mission launch was initially set for Tuesday, June 10, but was delayed by one day due to expected high winds.

As Axiom Space’s fourth crewed mission to the ISS, Ax-4 marks the debut of an updated SpaceX Crew Dragon capsule. “This is the first flight for this Dragon capsule, and it’s carrying an international crew—a perfect debut. We’ve upgraded storage, propulsion components, and the seat lash design for improved reliability and reuse,” said William Gerstenmaier, SpaceX’s vice president of build and flight reliability.

Axiom Space is a Houston-based private space infrastructure company. It has been launching private astronauts to the ISS for research and training since 2022, building expertise for its future station. With NASA planning to decommission the ISS by 2030, Axiom has laid the groundwork for the Axiom Station, the world’s first commercial space station. The company has already begun construction on its ISS replacement.

Advertisement

The Ax-4 mission’s research, spanning biological, life, and material sciences and Earth observation, will support this ambitious goal. Contributions from 31 countries underscore the mission’s global scope. The four-person crew will launch from Launch Complex 39A, embarking on a 14-day mission to conduct approximately 60 scientific studies.

“The AX-4 crew represents the very best of international collaboration, dedication, and human potential. Over the past 10 months, these astronauts have trained with focus and determination, each of them exceeding the required thresholds to ensure mission safety, scientific rigor, and operational excellence,” said Allen Flynt, Axiom Space’s chief of mission services.

The Ax-4 mission highlights Axiom’s commitment to advancing commercial space exploration. By leveraging SpaceX’s Dragon capsule and conducting diverse scientific experiments, Axiom is paving the way for its Axiom Station. This mission not only strengthens international collaborations but also positions Axiom as a leader in the evolving landscape of private space infrastructure.

Continue Reading

SpaceX

SpaceX Dragon to carry Axiom’s Ax-4 crew for ISS research

On June 10, Axiom’s Ax-4 mission heads to the ISS on a SpaceX Dragon capsule. It’s a historic return to space for India, Poland & Hungary.

Published

on

spacex-dragon-axiom-ax-4-mission-iss-research
(Credit: SpaceX)

Axiom Space’s Ax-4 mission, launched on a SpaceX Dragon spacecraft, will carry a historic international crew to the International Space Station (ISS) next Tuesday, June 10, from NASA’s Kennedy Space Center in Florida.

SpaceX’s Dragon capsule was recently photographed preparing for the Ax-4 launch. The Dragon will dock at the ISS on June 11 at approximately 12:30 p.m. ET for a 14-day mission focused on groundbreaking microgravity research.

The Ax-4 crew will be led by Commander Peggy Whitson from the United States. It includes Pilot Shubhanshu Shukla from India and mission specialists Sławosz Uznański-Wiśniewski from Poland and the European Space Agency and Tibor Kapu from Hungary. This mission marks a historic return to human spaceflight for India, Poland, and Hungary as each nation sends its first government-sponsored astronauts in over 40 years.

“With a culturally diverse crew, we are not only advancing scientific knowledge but also fostering international collaboration. Our previous missions set the stage, and with Ax-4, we ascend even higher, bringing more nations to low-Earth orbit and expanding humanity’s reach among the stars,” Whitson noted.

Advertisement

The Ax-4 mission’s research portfolio will be Axiom’s most extensive. It includes 60 scientific studies from 31 countries, including the U.S., India, Poland, Hungary, Saudi Arabia, Brazil, Nigeria, the UAE, and Europe. These studies will advance knowledge in human research, Earth observation, life, and biological and material sciences. Key investigations include supporting astronauts with insulin-dependent diabetes, examining microgravity’s impact on the brain, and studying cancer growth, particularly triple-negative breast cancer. Additional research will explore blood stem cells, joint health, blood flow, and astronaut readiness using wearable devices, iPhone software, and AWS Snowcone analytics.

Axiom Space’s partnerships with research organizations and academic institutions aim to deepen understanding of spaceflight’s effects on the human body, with potential applications for Earth-based healthcare. The Ax-4 mission underscores Axiom’s role in redefining access to low-Earth orbit, fostering global collaboration, and advancing microgravity research. As SpaceX’s Dragon enables this historic mission, it reinforces the company’s pivotal role in commercial spaceflight and scientific discovery.

Continue Reading

Elon Musk

SpaceX to decommission Dragon spacecraft in response to Pres. Trump war of words with Elon Musk

Elon Musk says SpaceX will decommission Dragon as a result of President Trump’s threat to end his subsidies and government contracts.

Published

on

SpaceX will decommission its Dragon spacecraft in response to the intense war of words that President Trump and CEO Elon Musk have entered on various social media platforms today.

President Trump and Musk, who was once considered a right-hand man to Trump, have entered a vicious war of words on Thursday. The issues stem from Musk’s disagreement with the “Big Beautiful Bill,” which will increase the U.S. federal deficit, the Tesla and SpaceX frontman says.

How Tesla could benefit from the ‘Big Beautiful Bill’ that axes EV subsidies

The insults and threats have been brutal, as Trump has said he doesn’t know if he’ll respect Musk again, and Musk has even stated that the President would not have won the election in November if it were not for him.

President Trump then said later in the day that:

“The easiest way to save money in our Budget, Billions and Billions of Dollars, is to terminate Elon’s Government Subsidies and Contracts. I was always surprised that Biden didn’t do it!”

Musk’s response was simple: he will decommission the SpaceX capsule responsible for transporting crew and cargo to the International Space Station (ISS): Dragon.

Dragon has completed 51 missions, 46 of which have been to the ISS. It is capable of carrying up to 7 passengers to and from Earth’s orbit. It is the only spacecraft that is capable of returning vast amounts of cargo to Earth. It is also the first private spacecraft to take humans to the ISS.

The most notable mission Dragon completed is one of its most recent, as SpaceX brought NASA astronauts Butch Wilmore and Suni Williams back to Earth after being stranded at the ISS by a Boeing Starliner capsule.

SpaceX’s reluctance to participate in federally funded projects may put the government in a strange position. It will look to bring Boeing back in to take a majority of these projects, but there might be some reluctance based on the Starliner mishap with Wilmore and Williams.

SpaceX bails out Boeing and employees are reportedly ‘humiliated’

Continue Reading

Trending