Connect with us

News

SpaceX orbital Starship launch debut officially slips to 2022 – but it’s not all bad news

Published

on

US government documentation suggests that the Federal Aviation Administration (FAA) aims to complete an environmental review of SpaceX’s orbital Starship launch site no earlier than December 31st, 2021, precluding an orbital launch attempt this year.

In light of the FAA taking until September 2021 to publish the draft of that environmental assessment (EA), a major delay has been the expected outcome for months. The latest development finally makes that delay official, confirming that even in the new best-case scenario, SpaceX will be unable to conduct Starship’s first orbital launch before January 1st, 2022. But while that unfortunate confirmation comes as little surprise, it’s not all bad news.

It’s unclear how accurate the Federal Infrastructure Projects’ “Permitting Dashboard” actually is but the information displayed on the website is specific and detailed enough for it to be deemed trustworthy. If correct, it states that the FAA aims to complete SpaceX’s orbital Starship EA by December 31st. To an extent, that internal estimate relies on the optimistic assumption that the FAA will rule in SpaceX’s favor on the matter and issue either a finding of no significant impact (FONSI).

SpaceX’s Starship EA “Permitting Dashboard” seems to imply that all steps involving NOAA have taken months longer than expected.

Of course, there’s a chance that the portal’s claim that the FAA will file Starship’s final orbital EA and conclude the EA process on the same day actually implies that the FAA has already ruled out the worst-case scenario (a no action alternative finding), which would be excellent news for SpaceX. In an optimal scenario, the 12/31/21 target means that the FAA could issue a FONSI or mitigated FONSI before the end of 2021. However, even if that’s the case, a highly favorable environmental review is just one part of the process of securing an orbital Starship launch license, which will be the next gating factor for the SpaceX rocket’s full-up launch debut.

Update: In an official email, the FAA says that the final EA it intends to release by December 31st “will include a Finding of No Significant Impact or decision to initiate an Environmental Impact Statement.” It’s unclear if that FONSI includes the possibility of a mitigated FONSI, which would be the optimal compromise scenario. If the FAA pursues an EIS, it would effectively restart the environmental review process from scratch, potentially delaying orbital Starship launches by a year or more.

Advertisement

There is very little public insight into what that launch licensing process involves or how long it usually takes but it’s safe to say that it could take months for the FAA to move from issuing a favorable EA to approving even the most limited possible orbital Starship launch license (a permit for a single flight). Still, there is some reason for optimism. If the FAA actually publishes a final – and favorable – environmental assessment by the end of 2021, less than four months after issuing the first draft EA for orbital Starship launches, it would be an exceptionally quick turnaround for such a large project and review.

Now that SpaceX has completed the first successful six-engine Starship static fire, the company could potentially be technically ready for the first orbital Starship launch as soon as the ship’s Super Heavy booster completes similar testing. That test campaign is even more ambitious than Starship’s and will eventually culminate in the first one or several 29-engine booster static fires, making Super Heavy the most powerful rocket stage ever tested. Plenty of uncertainty remains about the timeline for Super Heavy Booster 4 (B4) testing, though.

With a quick burst of progress, both Super Heavy B4 and Starbase’s orbital launch site could feasibly be ready to support testing before the end of November. Before true Super Heavy testing can began, SpaceX will need to close out one or both of the orbital pad’s liquid methane (LCH4) tanks, fill them with several hundred to several thousand tons of LCH4, button up Booster 4’s aft section with six steel ‘aerocovers’, finish reinstalling 29 Raptors, and complete the heat shield that will protect most of those engines during ground testing and in flight. Normally, that would likely be a few-day or few-week process for SpaceX but the company’s unusually slow pace of work as of late could turn it into a several-month ordeal.

With any luck, SpaceX has simply prioritized work on Starbase’s orbital launch site over the last few months and will refocus on preparing Super Heavy B4 and Starship S20 for flight as the FAA’s environmental review and launch licensing processes finally near their end.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

SpaceX is exploring a “Starlink Phone” for direct-to-device internet services: report

The update was reportedly shared to Reuters by people familiar with the matter. 

Published

on

(Credit: T-Mobile)

SpaceX is reportedly exploring new products tied to Starlink, including a potential Starlink-branded phone. 

The update was reportedly shared to Reuters by people familiar with the matter. 

A possible Starlink Phone

As per Reuters’ sources, SpaceX has reportedly discussed building a mobile device designed to connect directly to the Starlink satellite constellation. Details about the potential device and its possible release are still unclear, however.

SpaceX has dabbled with mobile solutions in the past. The company has partnered with T-Mobile to provide Starlink connectivity to existing smartphones. And last year, SpaceX initiated a $19.6 billion purchase of satellite spectrum from EchoStar.

Advertisement

Elon Musk did acknowledge the idea of a potential mobile device recently on X, writing that a Starlink phone is “not out of the question at some point.” Unlike conventional smartphones, however, Musk described a device that is “optimized purely for running max performance/watt neural nets.” 

Starlink and SpaceX’s revenue

Starlink has become SpaceX’s dominant commercial business. Reuters’ sources claimed that the private space company generated roughly $15–$16 billion in revenue last year, with about $8 billion in profit. Starlink is estimated to have accounted for 50% to 80% of SpaceX’s total revenue last year.

SpaceX now operates more than 9,500 Starlink satellites and serves over 9 million users worldwide. About 650 satellites are already dedicated to SpaceX’s direct-to-device initiative, which aims to eventually provide full cellular coverage globally.

Future expansion of Starlink’s mobile capabilities depends heavily on Starship, which is designed to launch larger batches of upgraded Starlink satellites. Musk has stated that each Starship launch carrying Starlink satellites could increase network capacity by “more than 20 times.”

Advertisement
Continue Reading

Elon Musk

FCC accepts SpaceX filing for 1 million orbital data center plan

The move formally places SpaceX’s “Orbital Data Center” concept into the FCC’s review process.

Published

on

Credit: SpaceX/X

The Federal Communications Commission (FCC) has accepted SpaceX’s filing for a new non-geostationary orbit (NGSO) satellite system of up to one million spacecraft and has opened the proposal for public comment. 

The move formally places SpaceX’s “Orbital Data Center” concept into the FCC’s review process, marking the first regulatory step for the ambitious space-based computing network.

FCC opens SpaceX’s proposal for comment

In a public notice, the FCC’s Space Bureau stated that it is accepting SpaceX’s application to deploy a new non-geostationary satellite system known as the “SpaceX Orbital Data Center system.” As per the filing, the system would consist of “up to one million satellites” operating at altitudes between 500 and 2,000 kilometers, using optical inter-satellite links for data transmission.

The FCC notice described the proposal as a long-term effort. SpaceX wrote that the system would represent the “first step towards becoming a Kardashev II-level civilization – one that can harness the Sun’s full power.” The satellites would rely heavily on high-bandwidth optical links and conduct telemetry, tracking, and command operations, with traffic routed through space-based laser networks before being sent to authorized ground stations.

Advertisement

FCC Chairman Brendan Carr highlighted the filing in a post on X, noting that the Commission is now seeking public comment on SpaceX’s proposal. Interested parties have until early March to submit comments.

What SpaceX is proposing to build

As per the FCC’s release, SpaceX’s orbital data center system would operate alongside its existing and planned Starlink constellations. The FCC notice noted that the proposed satellites may connect not only with others in the new system, but also with satellites in SpaceX’s first- and second-generation Starlink networks.

The filing also outlined several waiver requests, including exemptions from certain NGSO milestone and surety bond requirements, as well as flexibility in how orbital planes and communication beams are disclosed, as noted in a Benzinga report. SpaceX noted that these waivers are necessary to support the scale and architecture of the proposed system.

As noted in coverage of the filing, the proposal does not represent an immediate deployment plan, but rather a framework for future space-based computing infrastructure. SpaceX has discussed the idea of moving energy-intensive computing, such as AI workloads, into orbit, where continuous solar power and large physical scale could reduce constraints faced on Earth.

Advertisement
Continue Reading

Elon Musk

Elon Musk’s Boring Company signs deal to begin Dubai Loop project

The project marks the Boring Company’s first tunneling project outside the United States.

Published

on

Credit: RTA Dubai

Elon Musk’s Boring Company has signed a definitive agreement with Dubai’s Roads and Transport Authority to begin implementing the Dubai Loop. 

The project marks the Boring Company’s first tunneling project outside the United States.

The Boring Company signs Dubai Loop agreement

The Boring Company signed a partnership agreement with Dubai Roads and Transport Authority on the sidelines of the World Governments Summit 2026 to start the implementation of the Dubai Loop, as per the tunneling startup in a blog post.

The agreement was signed on behalf of Dubai RTA by Mattar Al Tayer, director general and chairman of the Board of Executive Directors, and on behalf of The Boring Company by James Fitzgerald, the startup’s global vice president of business development. Senior officials from both organizations were present at the signing ceremony.

Advertisement

The Dubai Loop project is intended to improve passenger mobility in high-density urban areas through underground vehicle tunnels designed for faster construction and lower surface disruption than conventional transport systems.

Pilot route and project scope outlined

The first phase of the Dubai Loop will consist of a 4-mile (6.4 km) pilot route with four stations linking the Dubai International Financial Centre and Dubai Mall. The pilot phase is expected to pave the way for a full network extending up to 14 miles (22.5 km) with 19 stations connecting the Dubai World Trade Centre, the financial district, and Business Bay.

The tunnels will have a diameter of 12 feet (3.6 meters) and will be dedicated to vehicle transport. Construction will rely on tunneling methods designed to reduce costs and minimize disruption to existing infrastructure.

The pilot phase is estimated to cost about $154 million, with delivery expected roughly one year after design work and preparatory activities are completed. The full Dubai Loop network is projected to cost approximately $545 million and would take around three years to implement.

Advertisement

Capacity targets and next steps

Mattar Al Tayer shared his excitement about the project, stating that the Loop system will be a qualitative addition to the city’s transportation system. “The project represents a qualitative addition to Dubai’s transport ecosystem, as it enhances integration between different mobility modes and provides flexible and efficient first- and last-mile solutions. 

“Studies have demonstrated the project’s efficiency in terms of capacity and operating costs, with the pilot route expected to serve around 13,000 passengers per day, while the full route is projected to have a total capacity of approximately 30,000 passengers per day,” he said. 

Steve Davis, president of The Boring Company, highlighted that the partnership aims to deliver safe and efficient tunneling solutions aligned with Dubai’s long-term mobility strategy.

“We are proud to partner with the Roads and Transport Authority, one of the world’s leading entities in adopting innovative solutions in the transport sector. Through this partnership, we look forward to delivering advanced, safe, and highly efficient tunnelling solutions that support Dubai’s vision for sustainable and future mobility,” Davis stated.

Advertisement
Continue Reading