

SpaceX
SpaceX’s Starship prototype set for first serious test after Raptor engine installed
In concert with South Texas’ Cameron County, SpaceX has officially scheduled the first serious test – requiring temporary road closures – of its Starship prototype, unofficially nicknamed ‘Starhopper’ in light of its ultimate goal of performing low-altitude, low-velocity hop tests.
SpaceX technicians have already successfully completed a number of unspecified tanking tests – likely with chemically neutral liquid nitrogen – and completed acceptance and installation of Raptor serial number 02 (SN02), setting the stage for the giant testbed’s first flight-critical tests. Now set to occur between
Scarcely seven days after the engine’s arrival in Boca Chica, SpaceX technicians completed the first-ever installation of a flight-ready Raptor – SN02 – on a full-scale BFR prototype known as Starhopper. Aside from marking a major symbolic milestone for the company’s next-generation rocket development program, the installation of a functional rocket engine on the first partial-fidelity vehicle prototype means that SpaceX can now enter into a new and critical stage of development: integrated flight testing.
Assuming (hopefully) that SpaceX has yet to conduct actual fueling tests of the Starship prototype without establishing roadblocks and safety perimeters, something that would be an egregious threat to nearby locals, it’s likely that this first major test – much like SpaceX’s established Falcon 9 and Heavy test regime – will involve a process known as a Wet Dress Rehearsal (WDR). A WDR would see Starhopper loaded with liquid methane and oxygen propellant – potentially anywhere from the bare minimum needed to operate a single Raptor to completely filling its tanks – to verify that the prototype’s complex plumbing system and giant tanks are operating nicely together under flight conditions (i.e. cryogenic temperatures, thermal and mechanical stresses, chemical environments, etc.). Much like routine Falcon 9 static fire tests performed both at SpaceX’s McGregor, TX test site and the launch pad, data indicating that the rocket is behaving nominally during the WDR allows the operations team to transition smoothly from a WDR into a captive static fire test, in which the vehicle’s engine(s) are briefly ignited to simulate the first few seconds prior to liftoff.
It’s relatively rare but not unusual for planned Falcon 9 or Heavy static fire tests to end during the WDR phase in cases where the launch team observes data that appears to be less than nominal. SpaceX generally takes a “better safe than sorry” approach to these sorts of operations, swallowing the costs and risk of raising customers’ ire due to delays in order to ensure the highest probability of complete launch success.
For a vehicle as utterly new and alien as Starhopper is to both SpaceX and the aerospace industry as a whole, it’s safe to say that that tendency towards caution will be readily on display throughout these first several tests, at least until the company’s operations technicians and engineers are considerably more familiar with the prototype rocket’s behavior. On the other hand, given just how shoestring the budget of this beast likely is and how rapidly SpaceX managed to go from an empty dirt lot to a hop-test-ready, 30ft/9m-diameter Starship prototype, it’s equally likely that the company – particularly CEO Elon Musk – will accept the increased risk of catastrophic vehicle failures to keep the development program as agile as possible.
As Musk himself frequently and famously is known to say, it’s far better to push hardware to failure during early testing than it is to hold back and risk largely unplanned failures during nominal operations, a lesson that SpaceX itself has learned the hard way several times. One step further, while they are at best undeniably inconvenient and expensive, major vehicle failures during testing can actually be an invaluable source of data that ultimately improves the system as a whole. For BFR, a launch vehicle meant to safely, routinely, and reliably transport as many as 100+ people both around the Earth and solar system, all possible opportunities to learn and improve the system prior to risking the lives of passengers will be an absolute necessity if SpaceX wants to ensure that customers remain willing to trust the company and its spacecraft with their lives.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Starlink makes a difference in Philippine province ravaged by typhoon
The Severe Tropical Storm battered the province, leaving communications networks in the area in shambles.

The Philippines’ Department of Information and Communications Technology (DICT) is using Starlink to provide connectivity in the municipality of Masbate, which was affected by Severe Tropical Storm Opong (international name Bualoi).
The Severe Tropical Storm battered the province, leaving communications networks in the area in shambles.
Starlink units enhance connectivity
DICT Secretary Henry Aguda visited the province to assess internet and communications infrastructure and deliver 10 additional Starlink satellite units, according to the Philippine News Agency. The is move aimed at strengthening emergency response and restore digital access to the area.
Aguda met with Masbate Governor Richard Kho during his visit and joined telecommunications representatives in inspecting provincial offices, free charging stations, and Wi-Fi connectivity sites for residents.
According to DICT officer-in-charge Rachel Ann Grabador, three Starlink units, 10 routers, and a 2kW solar-powered station have already been deployed in the province following the typhoon. The units have been installed at key facilities such as Masbate Airport’s communications tower and the Masbate Provincial Hospital’s administrative office.
Game-changing technology
Thanks to its global coverage and its capability to provide high-speed internet connectivity even in remote areas, Starlink has become the best communications solution that can be deployed in the aftermath of natural disasters. Its low-cost kits, which are capable of of providing fast internet speeds, are also portable, making them easy to deploy in areas that are damaged by natural disasters.
As noted in a Space.com report, there are currently 8,475 Starlink satellites in orbit, of which 8,460 are working, as of September 25, 2025. Initially, SpaceX had filed documents with International regulators to place about 4,000 Starlink satellites in Low Earth Orbit. Over time, however, the number of planned Starlink satellites has grown, with SpaceX aiming to launch as many as 42,000 Starlink satellites to fully connect the globe.
Elon Musk
SpaceX shares targets and tentative launch date for Starship Flight 11
As with all SpaceX tests, the estimated timeline for Starship Flight 11 remains subject to change based on conditions and readiness.

SpaceX is targeting Monday, October 13, for the eleventh test flight of its Starship launch system. The launch window is expected to open at 6:15 p.m. CT.
Similar to past Starship missions, a live webcast will begin about 30 minutes before launch on SpaceX’s website, X account, and X TV app. As with all SpaceX tests, the estimated timeline for Starship Flight 11 remains subject to change based on conditions and readiness.
Super Heavy booster landing test
The upcoming mission will build on the data gathered from Starship’s tenth test flight, focusing on booster performance and upper-stage capabilities. The Super Heavy booster, previously flown on Flight 8, will launch with 24 flight-proven Raptor engines, according to SpaceX in a blog post on its official website. Its primary objective is to validate a new landing burn engine configuration designed for the next generation of Super Heavy.
Instead of returning to Starbase, the Super Heavy booster will follow a trajectory toward the Gulf of America. During descent, it will ignite 13 engines before transitioning to a five-engine divert phase and then completing the landing burn with three central engines, entering a full hover while still above the ocean surface, followed by shutdown and dropping into the Gulf of America.
Starship upper-stage experiments
The Starship upper stage for Flight 11 will carry out a series of in-space demonstrations, including the deployment of eight Starlink simulators that are comparable in size to next-generation Starlink satellites. These payloads will reenter and burn up during descent. A planned Raptor engine relight in orbit will also provide valuable test data.
To evaluate the upper stage’s resilience during reentry, SpaceX engineers have intentionally removed heat shield tiles from select areas to stress-test Starship’s thermal protection system. The vehicle will attempt new maneuvers during descent, including a banking profile and subsonic guidance algorithms intended to simulate future return-to-launch-site missions. The upper stage will ultimately target a splashdown in the Indian Ocean.
SpaceX has already posted a link to the livestream for Starship Flight 11:
News
Astra CEO shades SpaceX over employee workload and Starbase
Elon Musk once stated that no one ever changed the world working just 40 hours a week.

Elon Musk once stated that no one ever changed the world working just 40 hours a week. This was something that is openly known among his companies. They have the potential to change the world, but they require a lot of hours.
SpaceX’s working environment was recently criticized by Chris Kemp, the chief executive officer of Astra. During some remarks at the Berkeley Space Symposium 2025 earlier this month, Kemp shared some sharp remarks about the Elon Musk-led private space enterprise.
SpaceX working conditions and Starbase
As noted in a report from Ars Technica, Kemp discussed a variety of topics during his talk. These included Astra’s successes and failures, as well as his thoughts on other players in the spaceflight industry. To be fair to Kemp, he practically shaded every major rival, calling Firefly’s engine “garbage,” dubbing Blue Origin as slow, and stating that Rocket Lab’s Electron rocket is “too small.”
SpaceX also received some colorful words from the Astra CEO. According to Kemp, SpaceX is leading the way in the spaceflight industry and Elon Musk is admirable in the way that he is willing to fail in order to move quickly. He did, however, highlight that Astra offers a significantly better working environment than SpaceX.
“It’s more fun than SpaceX, because we’re not on the border of Mexico where they’ll chop your head off if you accidentally take a left turn. And you don’t have to live in a trailer. And we don’t make you work six and a half days a week, 12 hours a day. It’s appreciated if you do, but not required,” Kemp said.
Elon Musk’s demands
It is known that Elon Musk demands quite a lot from his employees. However, it is also known that Musk-led companies move very fast and, in more ways than one, they have accomplished world-changing feats. Tesla, for example, has practically ushered in the era of the modern electric vehicle, and SpaceX has made space attainable through its reusable rockets. With this in mind, employees at Musk’s companies, and this of course includes SpaceX, are likely proud of their long work hours.
No one could probably go to Mars in this lifetime with a team that really works just 40 hours a week, after all.
-
Elon Musk1 week ago
Tesla FSD V14 set for early wide release next week: Elon Musk
-
News1 week ago
Elon Musk gives update on Tesla Optimus progress
-
News1 week ago
Tesla has a new first with its Supercharger network
-
News1 week ago
Tesla job postings seem to show next surprise market entry
-
News2 weeks ago
Tesla makes a big change to reflect new IRS EV tax credit rules
-
Investor's Corner1 week ago
Tesla gets new Street-high price target with high hopes for autonomy domination
-
Lifestyle7 days ago
500-mile test proves why Tesla Model Y still humiliates rivals in Europe
-
News5 days ago
Tesla Giga Berlin’s water consumption has achieved the unthinkable