Connect with us

SpaceX

SpaceX’s Starship prototype set for first serious test after Raptor engine installed

Starhopper conducts a propellant tank pressure regulation test on March 18th. (NASASpaceflight - bocachicagal)

Published

on

In concert with South Texas’ Cameron County, SpaceX has officially scheduled the first serious test – requiring temporary road closures – of its Starship prototype, unofficially nicknamed ‘Starhopper’ in light of its ultimate goal of performing low-altitude, low-velocity hop tests.

SpaceX technicians have already successfully completed a number of unspecified tanking tests – likely with chemically neutral liquid nitrogen – and completed acceptance and installation of Raptor serial number 02 (SN02), setting the stage for the giant testbed’s first flight-critical tests. Now set to occur between 10am and 4pm local time (8am2pm Pacific, 15:00-21:00 UTC), that test debut will likely see Starhopper topped to the brim with liquid methane and oxygen propellant for the first time, potentially transitioning into the first BFR-integrated Raptor static fire test.

Scarcely seven days after the engine’s arrival in Boca Chica, SpaceX technicians completed the first-ever installation of a flight-ready Raptor – SN02 – on a full-scale BFR prototype known as Starhopper. Aside from marking a major symbolic milestone for the company’s next-generation rocket development program, the installation of a functional rocket engine on the first partial-fidelity vehicle prototype means that SpaceX can now enter into a new and critical stage of development: integrated flight testing.

Assuming (hopefully) that SpaceX has yet to conduct actual fueling tests of the Starship prototype without establishing roadblocks and safety perimeters, something that would be an egregious threat to nearby locals, it’s likely that this first major test – much like SpaceX’s established Falcon 9 and Heavy test regime – will involve a process known as a Wet Dress Rehearsal (WDR). A WDR would see Starhopper loaded with liquid methane and oxygen propellant – potentially anywhere from the bare minimum needed to operate a single Raptor to completely filling its tanks – to verify that the prototype’s complex plumbing system and giant tanks are operating nicely together under flight conditions (i.e. cryogenic temperatures, thermal and mechanical stresses, chemical environments, etc.). Much like routine Falcon 9 static fire tests performed both at SpaceX’s McGregor, TX test site and the launch pad, data indicating that the rocket is behaving nominally during the WDR allows the operations team to transition smoothly from a WDR into a captive static fire test, in which the vehicle’s engine(s) are briefly ignited to simulate the first few seconds prior to liftoff.

It’s relatively rare but not unusual for planned Falcon 9 or Heavy static fire tests to end during the WDR phase in cases where the launch team observes data that appears to be less than nominal. SpaceX generally takes a “better safe than sorry” approach to these sorts of operations, swallowing the costs and risk of raising customers’ ire due to delays in order to ensure the highest probability of complete launch success.

For a vehicle as utterly new and alien as Starhopper is to both SpaceX and the aerospace industry as a whole, it’s safe to say that that tendency towards caution will be readily on display throughout these first several tests, at least until the company’s operations technicians and engineers are considerably more familiar with the prototype rocket’s behavior. On the other hand, given just how shoestring the budget of this beast likely is and how rapidly SpaceX managed to go from an empty dirt lot to a hop-test-ready, 30ft/9m-diameter Starship prototype, it’s equally likely that the company – particularly CEO Elon Musk – will accept the increased risk of catastrophic vehicle failures to keep the development program as agile as possible.

According to CEO Elon Musk, this large metal cylinder is actually one of the barrel sections of the first orbital Starship prototype. Workers are welding the sections together outside, rain or shine. (NASASpaceflight – bocachicagal)
Starhopper makes its own clouds during tanking tests on March 14th. (NASASpaceflight – bocachicagal)

As Musk himself frequently and famously is known to say, it’s far better to push hardware to failure during early testing than it is to hold back and risk largely unplanned failures during nominal operations, a lesson that SpaceX itself has learned the hard way several times. One step further, while they are at best undeniably inconvenient and expensive, major vehicle failures during testing can actually be an invaluable source of data that ultimately improves the system as a whole. For BFR, a launch vehicle meant to safely, routinely, and reliably transport as many as 100+ people both around the Earth and solar system, all possible opportunities to learn and improve the system prior to risking the lives of passengers will be an absolute necessity if SpaceX wants to ensure that customers remain willing to trust the company and its spacecraft with their lives.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement
-->

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

SpaceX issues statement on Starship V3 Booster 18 anomaly

The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas. 

Published

on

Credit: SpaceX/X

SpaceX has issued an initial statement about Starship Booster 18’s anomaly early Friday. The incident unfolded during gas-system pressure testing at the company’s Massey facility in Starbase, Texas. 

SpaceX’s initial comment

As per SpaceX in a post on its official account on social media platform X, Booster 18 was undergoing gas system pressure tests when the anomaly happened. Despite the nature of the incident, the company emphasized that no propellant was loaded, no engines were installed, and personnel were kept at a safe distance from the booster, resulting in zero injuries.

“Booster 18 suffered an anomaly during gas system pressure testing that we were conducting in advance of structural proof testing. No propellant was on the vehicle, and engines were not yet installed. The teams need time to investigate before we are confident of the cause. No one was injured as we maintain a safe distance for personnel during this type of testing. The site remains clear and we are working plans to safely reenter the site,” SpaceX wrote in its post on X. 

Incident and aftermath

Livestream footage from LabPadre showed Booster 18’s lower half crumpling around the liquid oxygen tank area at approximately 4:04 a.m. CT. Subsequent images posted by on-site observers revealed extensive deformation across the booster’s lower structure. Needless to say, spaceflight observers have noted that Booster 18 would likely be a complete loss due to its anomaly.

Booster 18 had rolled out only a day earlier and was one of the first vehicles in the Starship V3 program. The V3 series incorporates structural reinforcements and reliability upgrades intended to prepare Starship for rapid-reuse testing and eventual tower-catch operations. Elon Musk has been optimistic about Starship V3, previously noting on X that the spacecraft might be able to complete initial missions to Mars.

Advertisement
-->
Continue Reading

Elon Musk

SpaceX Starship Version 3 booster crumples in early testing

Photos of the incident’s aftermath suggest that Booster 18 will likely be retired.

Published

on

Credit: SpaceX/X

SpaceX’s new Starship first-stage booster, Booster 18, suffered major damage early Friday during its first round of testing in Starbase, Texas, just one day after rolling out of the factory. 

Based on videos of the incident, the lower section of the rocket booster appeared to crumple during a pressurization test. Photos of the incident’s aftermath suggest that Booster 18 will likely be retired. 

Booster test failure

SpaceX began structural and propellant-system verification tests on Booster 18 Thursday night at the Massey’s Test Site, only a few miles from Starbase’s production facilities, as noted in an Ars Technica report. At 4:04 a.m. CT on Friday, a livestream from LabPadre Space captured the booster’s lower half experiencing a sudden destructive event around its liquid oxygen tank section. Post-incident images, shared on X by @StarshipGazer, showed notable deformation in the booster’s lower structure.

Neither SpaceX nor Elon Musk had commented as of Friday morning, but the vehicle’s condition suggests it is likely a complete loss. This is quite unfortunate, as Booster 18 is already part of the Starship V3 program, which includes design fixes and upgrades intended to improve reliability. While SpaceX maintains a rather rapid Starship production line in Starbase, Booster 18 was generally expected to validate the improvements implemented in the V3 program.

Tight deadlines

SpaceX needs Starship boosters and upper stages to begin demonstrating rapid reuse, tower catches, and early operational Starlink missions over the next two years. More critically, NASA’s Artemis program depends on an on-orbit refueling test in the second half of 2026, a requirement for the vehicle’s expected crewed lunar landing around 2028.

Advertisement
-->

While SpaceX is known for diagnosing failures quickly and returning to testing at unmatched speed, losing the newest-generation booster at the very start of its campaign highlights the immense challenge involved in scaling Starship into a reliable, high-cadence launch system. SpaceX, however, is known for getting things done quickly, so it would not be a surprise if the company manages to figure out what happened to Booster 18 in the near future.

Continue Reading

Elon Musk

SpaceX’s next project will produce Starships at a level that sounds impossible

1,000 rockets per year is an insane number, especially considering Starship’s sheer size.

Published

on

Credit: SpaceX

Elon Musk has revealed bold plans for SpaceX’s newest Starbase facility in Texas, predicting it will become a birthplace for “so many spaceships.” The upcoming “Gigabay,” a massive $250 million production hub in Starbase, Texas, is designed to manufacture up to 1,000 Starship rockets per year.

That’s an insane number of rockets for a single facility, especially considering Starship’s sheer size. 

One of the world’s largest industrial structures

SpaceX’s Gigabay is expected to stand roughly 380 feet tall and enclose 46.5 million cubic feet of interior space, making it one of the largest industrial structures to date. The facility will feature 24 dedicated work cells for assembling and refurbishing Starship and Super Heavy vehicles, complete with heavy-duty cranes capable of lifting up to 400 U.S. tons, as noted in a Times of India report.

Construction crews have already placed four tower cranes on-site, with completion targeted for December 2026. Once operational, the Gigabay is expected to boost SpaceX’s launch cadence dramatically, as it would be able to build up to 1,000 reusable Starships per year, as noted in a report from the Dallas Express. Musk stated that the Gigabay will be “one of the biggest structures in the world” and hinted that it represents a major leap in Starbase’s evolution from test site to full-scale production hub.

A key step toward Mars and beyond

Starship is SpaceX’s heavy-lift rocket system, and it remains a key part of Elon Musk’s vision of a multiplanetary future. The vehicle can carry 100–150 tonnes to low Earth orbit and up to 250 tonnes in expendable mode. With several successful flights to date, including a perfect 11th test flight, the Starship program continues to refine its reusable launch system ahead of crewed lunar missions under NASA’s Artemis initiative.

Advertisement
-->

Starship is unlike any other spacecraft that has been produced in the past. As per Elon Musk, Starship is a “planet-colonizer” class rocket, as the magnitude of such a task “makes other space transport task trivial.” Considering Starship’s capabilities, it could indeed become the spacecraft that makes a Moon or Mars base feasible. 

Continue Reading