Connect with us

News

SpaceX Starship engine completes orbital-duration static fire test in Texas

Published

on

A local resident and unofficial SpaceX observer has reported hearing a test of one of Starship’s Raptor engines that lasted more than five minutes at the company’s McGregor, Texas development facilities.

If accurate, it could be the longest static fire of a Starship engine that SpaceX has ever completed in the two years since full-scale Raptor testing first began. Whether it was successful or not, a five or six-minute static fire would also confirm that SpaceX is well into the process of qualifying Raptor for Starship’s first orbital launch attempts.

An FCC “Special Temporary Authority” (STA) request filed by SpaceX itself for Starship’s inaugural “Orbital Test Flight” earlier this month provided several significant details about that milestone mission. Aside from revealing that Starship will ultimately attempt a soft ocean landing – splashdown – off the coast of a Hawaiian island after traveling ~75% of the way around Earth, it also included a precise timeline of launch events.

A timeline for Starship’s first orbital test flight. (SpaceX)

According to that timeline, ten seconds shy of three minutes after liftoff, Starship’s Super Heavy booster will shut down and separate from the spacecraft. Starship will then ignite either three or six Raptor engines for a bit less than six minutes to boost itself within the vicinity of orbital velocity. Curiously, the same timeline makes no mention of a deorbit burn, without which the first “orbital” test flight will technically be suborbital even if Starship is traveling very close to orbital velocity.

Regardless, the document confirms that Starship’s orbital insertion burns will be approximately 5.5-6.5 minutes long – the maximum stamina required from its Raptor engines, in other words. Rephrased, in its current design, Starship will never be able to reach orbit without Raptor engines capable of continuously operating for around six minutes. Up until high-altitude Starship test flights began in December 2020, the extent of Raptor’s long-duration capabilities and thus the state of SpaceX testing was effectively a mystery.

Advertisement

When Starship SN8 debuted, however, it quickly became clear that SpaceX had made significant progress after one of its three Raptor engines burned without apparent issue for 280 seconds (4:40). If SN3x and SN4x Raptors could handle almost five minutes of continuous operation, the engine was just ~20% improvement away from being able to complete a plausible orbital insertion burn.

Now, six months later, Raptor appears to have completed at least one truly orbital-class burn at SpaceX’s Central Texas development campus. McGregor typically completes multiple static fires every day and already performs similar-duration testing of Merlin Vacuum engines and upper stages, so it’s possible – if not probable – that one or several other five or six-minute-long tests have simply been missed over the last few months.

Beginning just a handful of months ago, SpaceX has been rapidly building a new Raptor test stand with two vertical engine bays and new liquid oxygen and methane propellant storage to go with it. Given that a six-minute Raptor engine static fire at or close to full thrust would consume around 220 metric tons of propellant, it’s possible that SpaceX’s ground test facilities simply didn’t have the storage capacity to support such long tests prior to those recent upgrades.

Regardless, the first unofficially confirmed orbital-duration test is an exciting and important milestone with or without SpaceX confirmation and continues to make it abundantly clear that the company is now almost entirely focused on reaching orbit (or getting close).

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Elon Musk pivots SpaceX plans to Moon base before Mars

The shift, Musk explained, is driven by launch cadence and the urgency of securing humanity’s long-term survival beyond Earth, among others.

Published

on

Credit: @SecWar/X

Elon Musk has clarified that SpaceX is prioritizing the Moon over Mars as the fastest path to establishing a self-growing off-world civilization. 

The shift, Musk explained, is driven by launch cadence and the urgency of securing humanity’s long-term survival beyond Earth, among others.

Why the Moon is now SpaceX’s priority

In a series of posts on X, Elon Musk stated that SpaceX is focusing on building a self-growing city on the Moon because it can be achieved significantly faster than a comparable settlement on Mars. As per Musk, a Moon city could possibly be completed in under 10 years, while a similar settlement on Mars would likely require more than 20.

“For those unaware, SpaceX has already shifted focus to building a self-growing city on the Moon, as we can potentially achieve that in less than 10 years, whereas Mars would take 20+ years. The mission of SpaceX remains the same: extend consciousness and life as we know it to the stars,” Musk wrote in a post on X.

Advertisement

Musk highlighted that launch windows to Mars only open roughly every 26 months, with a six-month transit time, whereas missions to the Moon can launch approximately every 10 days and arrive in about two days. That difference, Musk stated, allows SpaceX to iterate far more rapidly on infrastructure, logistics, and survival systems.

“The critical path to a self-growing Moon city is faster,” Musk noted in a follow-up post.

Mars still matters, but runs in parallel

Despite the pivot to the Moon, Musk stressed that SpaceX has not abandoned Mars. Instead, Mars development is expected to begin in about five to seven years and proceed alongside the company’s lunar efforts.

Musk explained that SpaceX would continue launching directly from Earth to Mars when possible, rather than routing missions through the Moon, citing limited fuel availability on the lunar surface. The Moon’s role, he stated, is not as a staging point for Mars, but as the fastest achievable location for a self-sustaining off-world civilization.

Advertisement

“The Moon would establish a foothold beyond Earth quickly, to protect life against risk of a natural or manmade disaster on Earth,” Musk wrote.

Continue Reading

News

Elon Musk confirms Tesla Semi will enter high-volume production this year

Musk shared his update in a post on social media platform X.

Published

on

Credit: Tesla

Elon Musk has confirmed that Tesla will begin high-volume production of the Class 8 all-electric Semi this year. 

He shared his update in a post on social media platform X.

Musk confirms Tesla Semi production ramp

Tesla CEO Elon Musk reaffirmed on X that the Semi is finally moving into volume production, posting on Sunday that “Tesla Semi starts high volume production this year.”

The update comes as Tesla refreshed its Semi lineup on its official website, an apparent hint that the program is transitioning from limited pilots into wider commercial deployment. As per Tesla’s official website, two variants of the Semi will be offered to consumers: Standard and Long Range.

Advertisement

The Standard trim offers up to 325 miles of range with an energy consumption rating of 1.7 kWh per mile and a gross combination weight rating of 82,000 pounds. The Long Range version pushes driving range to 500 miles, with Tesla noting a higher curb weight of about 23,000 pounds, likely due to a larger battery pack.

Both trims support fast charging, with Tesla stating that the Semi can recover up to 60% of its range in 30 minutes using compatible charging infrastructure.

Broader Tesla Semi rollout

Tesla has already delivered production Semi units to select partners, including snack and beverage giant PepsiCo as well as logistics behemoth DHL, which confirmed that its truck operates daily in California, traveling roughly 100 miles per day and requiring charging just about once a week.

The company has also partnered with Uber Freight, as noted in a Benzinga report, with Tesla executives previously describing the agreement as a way for fleet operators to experience the Semi’s lower operating and maintenance costs firsthand.

Advertisement

With Musk now publicly committing to high-volume production, the Semi appears poised to move beyond pilot programs and into scaled commercial use, an important step in Tesla’s wider push to electrify heavy-duty and long-range trucking.

Continue Reading

News

Tesla tops France reliability rankings, beating Toyota for the first time

The milestone was celebrated by CEO Elon Musk on social media platform X.

Published

on

Credit: Tesla

Tesla has overtaken Toyota to become France’s most reliable car brand in 2025, as per a new nationwide reliability ranking published by Auto Plus magazine.

The milestone was celebrated by CEO Elon Musk on social media platform X.

Tesla tops reliability ranking in France

Tesla ranked first overall in Auto Plus’ 2025 reliability study, surpassing long-time benchmark Toyota across all powertrain types, including gasoline, hybrid, and electric vehicles.

The ranking, published on February 6, 2026, evaluated early problems reported in 2025 on vehicles registered in France since January 1, 2018, with fewer than 150,000 kilometers on the odometer, as noted by a Numerama report. This marked Tesla’s first appearance in the magazine’s reliability rankings, which was enabled by the company’s growing vehicle population in the French market.

Advertisement

According to the publication, Tesla vehicles showed no recurring major defects beyond isolated suspension arm issues, which are covered under the company’s four-year or 80,000-kilometer warranty. Other reported issues were described as minor, including occasional screen glitches and door handle concerns.

Why this ranking differs from earlier criticism

Tesla’s top placement contrasts sharply with past assessments from the German Automobile Club (ADAC), which previously ranked the Model 3 and Model Y low in its technical inspection reports. Auto Plus noted that those inspections were focused heavily on factors such as brake disc wear, which are not necessarily the best benchmarks for overall vehicle reliability.

By focusing instead on real-world reliability data and early ownership issues, Auto Plus’ methodology offered a broader picture of how vehicles perform over time rather than how individual components age under inspection standards. The publication emphasized that electric vehicles, with far fewer moving parts than combustion-engine cars, are not inherently less reliable.

While the ranking supports the case that electric vehicles can match or exceed the reliability of traditional brands, the magazine acknowledged limitations in its analysis. Still, Tesla’s debut at the top of the list underscores how perceptions of EV durability are shifting as more long-term data becomes available in major automotive markets like France.

Advertisement
Continue Reading