Connect with us

News

SpaceX’s next Starship hop a step closer after ‘cryo proof’ test

SpaceX appears to have successfully completed one of three major tests standing between Starship SN6 and the next Starship hop. (LabPadre)

Published

on

SpaceX appears to have successfully completed one of three major tests standing between a new Starship prototype and the rocket’s next hop.

Known as a cryogenic proof test (“cryo proof”), signs currently point towards a success on Starship SN6’s first try – albeit an hour or two past the end of the planned test window. The proof was planned between 8 am and 5 pm CDT (UTC-5) on August 16th with identical backup windows on Monday and Tuesday in the event of an abort or delay. Thankfully, in a breath of fresh air after many Starship SN5 test delays, SpaceX had no such need.

With the help of local sheriffs, SpaceX closed the highway around 10:15 am and pressurized Starship SN6 with ambient-temperature gas (likely nitrogen) around half an hour later. As usual, the company took its time while the Starship prototype effectively came to life for the first time. Around 2.5 hours later, the Starship began visibly venting for the first time as it operated dozens of valves to maintain safe tank pressures.

LabPadre’s unofficial 24/7 livestream broadcast the entirety of SpaceX’s August 16th Starship testing.

To perform a cryogenic pressure test, SpaceX effectively performs a wet dress rehearsal (WDR) – a test that simulates a full launch flow short of liftoff – with no engine installed. To prevent leaks or hull breaches from turning potentially catastrophic during what is often the first major test of a prototype, SpaceX loads Starship with liquid nitrogen (LN2) instead of liquid methane and oxygen propellant. During that process, Starship’s thin steel skin will quickly drop to arctic temperatures, becoming cold enough that it will literally freeze the water vapor out of any ambient air it comes in contact with.

A test tank demonstrates the frost phenomenon on June 15th. (NASASpaceflight – bocachicagal

Around 1 pm local, the first sign of that frost sheath appeared but remained a sliver before disappearing around 2 pm. Starship SN6 then hung around for an hour before testing activities appeared to restart. Close to 5:40 pm, almost an hour after SpaceX’s August 16th window was meant to close, frost reappeared on Starship SN6’s hull and rapidly crept up the side of the massive rocket.

Starship SN5’s own cryo proof test – completed on June 30th – debuted apparent upgrades to SpaceX’s South Texas launch facilities, loading the rocket with hundreds of thousands of gallons of LN2 in 15-20 minutes. The ability to load huge quantities of cryogenic propellant very quickly will be critical for SpaceX, as Starship’s efficiency will decrease substantially as its propellant warms. Along those lines, Starship SN6 became the second prototype to be rapidly loaded with liquid nitrogen, going from nearly empty to nearly full in ~15 minutes.

Advertisement
-->

SN6 detanked over the next hour or so and SpaceX opened the road and had a team back on the pad to inspect the rocket by 7:40 pm. At some point during the test, SpaceX likely actuated hydraulic arms attached to Starship’s engine section to simulate the stresses of Raptor thrust under cryogenic loads. Either way, SpaceX was apparently satisfied with the results of Starship SN6’s first cryo proof and proceeded to cancel two backup windows scheduled on August 17th and 18th – a consistent sign that things either went very right or very wrong.

Starship SN5 and SN6 pass each other while swapping spots at SpaceX’s South Texas factory and launch pad. (NASASpaceflight – bocachicagal)

In the case of SN6, nothing was distinctly amiss or different during its cryo proof, pointing towards a successful test. If that’s the case, SpaceX will begin removing the hydraulic Raptor simulator to install an actual Raptor engine and will scheduled road closures for an imminent static fire test. Prior to that actual Raptor ignition test, SpaceX may choose to perform a wet dress rehearsal (WDR) on its own or partially test Raptor by igniting its preburners to momentarily spin up its turbopumps. The company could also integrate both of those precursor tests into the same window as the static fire itself.

If those tests go according to plan, Starship SN6 could be ready for SpaceX’s second full-scale hop ever just a week (or less) later. CEO Elon Musk says that the company’s current goal is to perform multiple Starship tests until the process is fast, smooth, and consistent.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla FSD fleet is nearing 7 billion total miles, including 2.5 billion city miles

As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles.

Published

on

Tesla’s Full Self-Driving (Supervised) fleet is closing in on almost 7 billion total miles driven, as per data posted by the company on its official FSD webpage. 

These figures hint at the massive scale of data fueling Tesla’s rapid FSD improvements, which have been quite notable as of late.

FSD mileage milestones

As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles. Tesla owner and avid FSD tester Whole Mars Catalog also shared a screenshot indicating that from the nearly 7 billion miles traveled by the FSD fleet, more than 2.5 billion miles were driven inside cities. 

City miles are particularly valuable for complex urban scenarios like unprotected turns, pedestrian interactions, and traffic lights. This is also the difference-maker for FSD, as only complex solutions, such as Waymo’s self-driving taxis, operate similarly on inner-city streets. And even then, incidents such as the San Francisco blackouts have proven challenging for sensor-rich vehicles like Waymos. 

Tesla’s data edge

Tesla has a number of advantages in the autonomous vehicle sector, one of which is the size of its fleet and the number of vehicles training FSD on real-world roads. Tesla’s nearly 7 billion FSD miles then allow the company to roll out updates that make its vehicles behave like they are being driven by experienced drivers, even if they are operating on their own. 

Advertisement
-->

So notable are Tesla’s improvements to FSD that NVIDIA Director of Robotics Jim Fan, after experiencing FSD v14, noted that the system is the first AI that passes what he described as a “Physical Turing Test.” 

“Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies,” Fan wrote in a post on X. 

Continue Reading

News

Tesla starts showing how FSD will change lives in Europe

Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.

Published

on

Credit: Grok Imagine

Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options. 

Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.

Officials see real impact on rural residents

Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”

The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.

What the Ministry for Economic Affairs and Transport says

Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents. 

Advertisement
-->

“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe. 

“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post

Continue Reading

News

Tesla China quietly posts Robotaxi-related job listing

Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.

Published

on

Credit: Tesla

Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China. 

As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.

Robotaxi-specific role

The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi. 

Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.

China Robotaxi launch

China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.

Advertisement
-->

This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees. 

Continue Reading