News
SpaceX Starship test tank survives first two nights of stress testing
SpaceX’s newest Starship test tank has survived the first two nights of stress testing, pushing the steel tank one step closer to a destructive finale.
Known as Starship SN7.1, the new tank – aside from one critical difference – is similar to Starship SN2 (pictured above), a full-scale prototype SpaceX repurposed into a test tank in March 2020. SN2 served to test improvements made to the design of Starship’s “thrust puck,” a dense steel cone that must transmit the thrust of three Raptor engines through the rest of the rocket. Much like SN2, SN7.1 is a test tank with a focus on the behavior of Starship’s engine section under extreme loads at cryogenic temperatures.
Unlike SN2, however, SN7.1 is built almost entirely out of a new steel alloy – closer to 304L than the 301 stainless used on all previous prototypes.


SpaceX rolled the tank to the launch site and pressurized it with cryogenic liquid nitrogen on September 10th as part of a routine “cryo proof” acceptance test. SN7.1 appeared to complete that proof without issue, exhibiting no leaks or unusual behavior, and likely reached pressures of 7.5-8 bar (~110-120 psi) before detanking.
Over the next three days, SpaceX inspected the test tank, relocated it to a more capable (and expensive) test stand, and connected hydraulic rams (used to mechanically simulate engine thrust) to its thrust puck.

Around midnight on September 15th, SpaceX kicked off the first round of SN7.1 stress testing, repeatedly loading and unloading the tank with liquid nitrogen. While it’s impossible to visually confirm the use of the stand’s hydraulic rams, it’s safe to assume that SpaceX used them to stress SN7.1’s thrust puck while chilled to cryogenic temperatures. The new steel alloy SpaceX is using on SN7.x and prototypes SN8 and beyond is designed to be less brittle at cryogenic temperatures, nominally ensuring that flawed or aged Starship tanks leak before they burst or explode.
Aside from the obvious triple-Raptor thrust simulation, SpaceX likely also simulated thrust from one or two Raptors to verify the new design’s ability to survive asymmetric thrust in engine-out scenarios. Ultimately, SN7.1 made it through the night without obvious issues and there have been no signs of leak-fixing today, suggesting that the tank performed well. SpaceX has a second SN7.1 test period scheduled to begin on September 17th, as well as backups on the 15th, 16th, 20th, and 21st. More likely than not, SN7.1’s next test will end when the tank is intentionally pressurized to failure.
Update: SpaceX has kicked off another night of SN7.1 stress testing, beginning almost as soon as the nine-hour window opened (9pm CDT (UTC-5) on September 15th). As of midnight, the company has already put the test tank through one cycle, rapidly filling and pressurizing it with liquid nitrogen before detanking. It remains to be seen if the company will continue testing this window, which closes at 6am on Wednesday. There is also a chance that SpaceX will intentionally pressurize SN7.1 to failure tonight, although it’s much more likely that the tank will be returned to a cheaper, simpler transport stand rather than risking damage to a new launch mount.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
Elon Musk
Starlink passes 9 million active customers just weeks after hitting 8 million
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
SpaceX’s Starlink satellite internet service has continued its rapid global expansion, surpassing 9 million active customers just weeks after crossing the 8 million mark.
The milestone highlights the accelerating growth of Starlink, which has now been adding over 20,000 new users per day.
9 million customers
In a post on X, SpaceX stated that Starlink now serves over 9 million active users across 155 countries, territories, and markets. The company reached 8 million customers in early November, meaning it added roughly 1 million subscribers in under seven weeks, or about 21,275 new users on average per day.
“Starlink is connecting more than 9M active customers with high-speed internet across 155 countries, territories, and many other markets,” Starlink wrote in a post on its official X account. SpaceX President Gwynne Shotwell also celebrated the milestone on X. “A huge thank you to all of our customers and congrats to the Starlink team for such an incredible product,” she wrote.
That growth rate reflects both rising demand for broadband in underserved regions and Starlink’s expanding satellite constellation, which now includes more than 9,000 low-Earth-orbit satellites designed to deliver high-speed, low-latency internet worldwide.
Starlink’s momentum
Starlink’s momentum has been building up. SpaceX reported 4.6 million Starlink customers in December 2024, followed by 7 million by August 2025, and 8 million customers in November. Independent data also suggests Starlink usage is rising sharply, with Cloudflare reporting that global web traffic from Starlink users more than doubled in 2025, as noted in an Insider report.
Starlink’s momentum is increasingly tied to SpaceX’s broader financial outlook. Elon Musk has said the satellite network is “by far” the company’s largest revenue driver, and reports suggest SpaceX may be positioning itself for an initial public offering as soon as next year, with valuations estimated as high as $1.5 trillion. Musk has also suggested in the past that Starlink could have its own IPO in the future.
News
NVIDIA Director of Robotics: Tesla FSD v14 is the first AI to pass the “Physical Turing Test”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine.
NVIDIA Director of Robotics Jim Fan has praised Tesla’s Full Self-Driving (Supervised) v14 as the first AI to pass what he described as a “Physical Turing Test.”
After testing FSD v14, Fan stated that his experience with FSD felt magical at first, but it soon started to feel like a routine. And just like smartphones today, removing it now would “actively hurt.”
Jim Fan’s hands-on FSD v14 impressions
Fan, a leading researcher in embodied AI who is currently solving Physical AI at NVIDIA and spearheading the company’s Project GR00T initiative, noted that he actually was late to the Tesla game. He was, however, one of the first to try out FSD v14.
“I was very late to own a Tesla but among the earliest to try out FSD v14. It’s perhaps the first time I experience an AI that passes the Physical Turing Test: after a long day at work, you press a button, lay back, and couldn’t tell if a neural net or a human drove you home,” Fan wrote in a post on X.
Fan added: “Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies.”
The Physical Turing Test
The original Turing Test was conceived by Alan Turing in 1950, and it was aimed at determining if a machine could exhibit behavior that is equivalent to or indistinguishable from a human. By focusing on text-based conversations, the original Turing Test set a high bar for natural language processing and machine learning.
This test has been passed by today’s large language models. However, the capability to converse in a humanlike manner is a completely different challenge from performing real-world problem-solving or physical interactions. Thus, Fan introduced the Physical Turing Test, which challenges AI systems to demonstrate intelligence through physical actions.
Based on Fan’s comments, Tesla has demonstrated these intelligent physical actions with FSD v14. Elon Musk agreed with the NVIDIA executive, stating in a post on X that with FSD v14, “you can sense the sentience maturing.” Musk also praised Tesla AI, calling it the best “real-world AI” today.
News
Tesla AI team burns the Christmas midnight oil by releasing FSD v14.2.2.1
The update was released just a day after FSD v14.2.2 started rolling out to customers.
Tesla is burning the midnight oil this Christmas, with the Tesla AI team quietly rolling out Full Self-Driving (Supervised) v14.2.2.1 just a day after FSD v14.2.2 started rolling out to customers.
Tesla owner shares insights on FSD v14.2.2.1
Longtime Tesla owner and FSD tester @BLKMDL3 shared some insights following several drives with FSD v14.2.2.1 in rainy Los Angeles conditions with standing water and faded lane lines. He reported zero steering hesitation or stutter, confident lane changes, and maneuvers executed with precision that evoked the performance of Tesla’s driverless Robotaxis in Austin.
Parking performance impressed, with most spots nailed perfectly, including tight, sharp turns, in single attempts without shaky steering. One minor offset happened only due to another vehicle that was parked over the line, which FSD accommodated by a few extra inches. In rain that typically erases road markings, FSD visualized lanes and turn lines better than humans, positioning itself flawlessly when entering new streets as well.
“Took it up a dark, wet, and twisty canyon road up and down the hill tonight and it went very well as to be expected. Stayed centered in the lane, kept speed well and gives a confidence inspiring steering feel where it handles these curvy roads better than the majority of human drivers,” the Tesla owner wrote in a post on X.
Tesla’s FSD v14.2.2 update
Just a day before FSD v14.2.2.1’s release, Tesla rolled out FSD v14.2.2, which was focused on smoother real-world performance, better obstacle awareness, and precise end-of-trip routing. According to the update’s release notes, FSD v14.2.2 upgrades the vision encoder neural network with higher resolution features, enhancing detection of emergency vehicles, road obstacles, and human gestures.
New Arrival Options also allowed users to select preferred drop-off styles, such as Parking Lot, Street, Driveway, Parking Garage, or Curbside, with the navigation pin automatically adjusting to the ideal spot. Other refinements include pulling over for emergency vehicles, real-time vision-based detours for blocked roads, improved gate and debris handling, and Speed Profiles for customized driving styles.