Connect with us

News

SpaceX Starship test tank survives first two nights of stress testing

SpaceX's newest Starship test tank has survived the first round of stress testing. SN2 - very similar to SN7.1 - is pictured here in March 2020. (NASASpaceflight - bocachicagal)

Published

on

SpaceX’s newest Starship test tank has survived the first two nights of stress testing, pushing the steel tank one step closer to a destructive finale.

Known as Starship SN7.1, the new tank – aside from one critical difference – is similar to Starship SN2 (pictured above), a full-scale prototype SpaceX repurposed into a test tank in March 2020. SN2 served to test improvements made to the design of Starship’s “thrust puck,” a dense steel cone that must transmit the thrust of three Raptor engines through the rest of the rocket. Much like SN2, SN7.1 is a test tank with a focus on the behavior of Starship’s engine section under extreme loads at cryogenic temperatures.

Unlike SN2, however, SN7.1 is built almost entirely out of a new steel alloy – closer to 304L than the 301 stainless used on all previous prototypes.

SN2, July 2020. (NASASpaceflight – bocachicagal)
Design-wise, SN7.1 is almost identical to SN2. (NASASpaceflight – bocachicagal)

SpaceX rolled the tank to the launch site and pressurized it with cryogenic liquid nitrogen on September 10th as part of a routine “cryo proof” acceptance test. SN7.1 appeared to complete that proof without issue, exhibiting no leaks or unusual behavior, and likely reached pressures of 7.5-8 bar (~110-120 psi) before detanking.

Over the next three days, SpaceX inspected the test tank, relocated it to a more capable (and expensive) test stand, and connected hydraulic rams (used to mechanically simulate engine thrust) to its thrust puck.

Advertisement
While SpaceX never confirmed results, Starship test tank SN7 is believed to have broken pressure records before it burst, a strong sign that the new steel alloy is the superior choice for future prototypes. (NASASpaceflight – bocachicagal

Around midnight on September 15th, SpaceX kicked off the first round of SN7.1 stress testing, repeatedly loading and unloading the tank with liquid nitrogen. While it’s impossible to visually confirm the use of the stand’s hydraulic rams, it’s safe to assume that SpaceX used them to stress SN7.1’s thrust puck while chilled to cryogenic temperatures. The new steel alloy SpaceX is using on SN7.x and prototypes SN8 and beyond is designed to be less brittle at cryogenic temperatures, nominally ensuring that flawed or aged Starship tanks leak before they burst or explode.

Aside from the obvious triple-Raptor thrust simulation, SpaceX likely also simulated thrust from one or two Raptors to verify the new design’s ability to survive asymmetric thrust in engine-out scenarios. Ultimately, SN7.1 made it through the night without obvious issues and there have been no signs of leak-fixing today, suggesting that the tank performed well. SpaceX has a second SN7.1 test period scheduled to begin on September 17th, as well as backups on the 15th, 16th, 20th, and 21st. More likely than not, SN7.1’s next test will end when the tank is intentionally pressurized to failure.

Update: SpaceX has kicked off another night of SN7.1 stress testing, beginning almost as soon as the nine-hour window opened (9pm CDT (UTC-5) on September 15th). As of midnight, the company has already put the test tank through one cycle, rapidly filling and pressurizing it with liquid nitrogen before detanking. It remains to be seen if the company will continue testing this window, which closes at 6am on Wednesday. There is also a chance that SpaceX will intentionally pressurize SN7.1 to failure tonight, although it’s much more likely that the tank will be returned to a cheaper, simpler transport stand rather than risking damage to a new launch mount.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

IM Motors co-CEO apologizes to Tesla China over FUD comments

Liu said later investigations showed the accident was not caused by a brake failure on the Tesla’s part, contrary to his initial comments.

Published

on

Credit: Grok Imagine

Liu Tao, co-CEO of IM Motors, has publicly apologized to Tesla China for comments he made in 2022 suggesting a Tesla vehicle was defective following a fatal traffic accident in Chaozhou, China. 

Liu said later investigations showed the accident was not caused by a brake failure on the Tesla’s part, contrary to his initial comments.

IM Motors co-CEO issues apology

Liu Tao posted a statement addressing remarks he made following a serious traffic accident in Chaozhou, Guangdong province, in November 2022, as noted in a Sina News report. Liu stated that based on limited public information at the time, he published a Weibo post suggesting a safety issue with the Tesla involved in the crash. The executive clarified that his initial comments were incorrect.

“On November 17, 2022, based on limited publicly available information, I posted a Weibo post regarding a major traffic accident that occurred in Chaozhou, suggesting that the Tesla product involved in the accident posed a safety hazard. Four hours later, I deleted the post. In May 2023, according to the traffic police’s accident liability determination and relevant forensic opinions, the Chaozhou accident was not caused by Tesla brake failure. 

Advertisement

“The aforementioned findings and opinions regarding the investigation conclusions of the Chaozhou accident corrected the erroneous statements I made in my previous Weibo post, and I hereby clarify and correct them. I apologize for the negative impact my inappropriate remarks made before the facts were ascertained, which caused Tesla,” Liu said. 

Investigation and court findings

The Chaozhou accident occurred in Raoping County in November 2022 and resulted in two deaths and three injuries. Video footage circulated online at the time showed a Tesla vehicle accelerating at high speed and colliding with multiple motorcycles and bicycles. Reports indicated the vehicle reached a speed of 198 kilometers per hour.

The incident drew widespread attention as the parties involved provided conflicting accounts and investigation details were released gradually. Media reports in early 2023 said investigation results had been completed, though the vehicle owner requested a re-investigation, delaying the issuance of a final liability determination.

The case resurfaced later in 2023 following a defamation lawsuit filed by Tesla China against a media outlet. According to a court judgment cited by Shanghai Securities News, forensic analysis determined that the fatal accident was unrelated to any malfunction on the Tesla’s braking or steering systems. The court also ruled that the media outlet must publish an apology, address the negative impact on Tesla China’s reputation, and pay a penalty of 30,000 yuan.

Continue Reading

Elon Musk

SpaceX is exploring a “Starlink Phone” for direct-to-device internet services: report

The update was reportedly shared to Reuters by people familiar with the matter. 

Published

on

(Credit: T-Mobile)

SpaceX is reportedly exploring new products tied to Starlink, including a potential Starlink-branded phone. 

The update was reportedly shared to Reuters by people familiar with the matter. 

A possible Starlink Phone

As per Reuters’ sources, SpaceX has reportedly discussed building a mobile device designed to connect directly to the Starlink satellite constellation. Details about the potential device and its possible release are still unclear, however.

SpaceX has dabbled with mobile solutions in the past. The company has partnered with T-Mobile to provide Starlink connectivity to existing smartphones. And last year, SpaceX initiated a $19.6 billion purchase of satellite spectrum from EchoStar.

Advertisement

Elon Musk did acknowledge the idea of a potential mobile device recently on X, writing that a Starlink phone is “not out of the question at some point.” Unlike conventional smartphones, however, Musk described a device that is “optimized purely for running max performance/watt neural nets.” 

Starlink and SpaceX’s revenue

Starlink has become SpaceX’s dominant commercial business. Reuters’ sources claimed that the private space company generated roughly $15–$16 billion in revenue last year, with about $8 billion in profit. Starlink is estimated to have accounted for 50% to 80% of SpaceX’s total revenue last year.

SpaceX now operates more than 9,500 Starlink satellites and serves over 9 million users worldwide. About 650 satellites are already dedicated to SpaceX’s direct-to-device initiative, which aims to eventually provide full cellular coverage globally.

Future expansion of Starlink’s mobile capabilities depends heavily on Starship, which is designed to launch larger batches of upgraded Starlink satellites. Musk has stated that each Starship launch carrying Starlink satellites could increase network capacity by “more than 20 times.”

Advertisement
Continue Reading

Elon Musk

FCC accepts SpaceX filing for 1 million orbital data center plan

The move formally places SpaceX’s “Orbital Data Center” concept into the FCC’s review process.

Published

on

Credit: SpaceX/X

The Federal Communications Commission (FCC) has accepted SpaceX’s filing for a new non-geostationary orbit (NGSO) satellite system of up to one million spacecraft and has opened the proposal for public comment. 

The move formally places SpaceX’s “Orbital Data Center” concept into the FCC’s review process, marking the first regulatory step for the ambitious space-based computing network.

FCC opens SpaceX’s proposal for comment

In a public notice, the FCC’s Space Bureau stated that it is accepting SpaceX’s application to deploy a new non-geostationary satellite system known as the “SpaceX Orbital Data Center system.” As per the filing, the system would consist of “up to one million satellites” operating at altitudes between 500 and 2,000 kilometers, using optical inter-satellite links for data transmission.

The FCC notice described the proposal as a long-term effort. SpaceX wrote that the system would represent the “first step towards becoming a Kardashev II-level civilization – one that can harness the Sun’s full power.” The satellites would rely heavily on high-bandwidth optical links and conduct telemetry, tracking, and command operations, with traffic routed through space-based laser networks before being sent to authorized ground stations.

Advertisement

FCC Chairman Brendan Carr highlighted the filing in a post on X, noting that the Commission is now seeking public comment on SpaceX’s proposal. Interested parties have until early March to submit comments.

What SpaceX is proposing to build

As per the FCC’s release, SpaceX’s orbital data center system would operate alongside its existing and planned Starlink constellations. The FCC notice noted that the proposed satellites may connect not only with others in the new system, but also with satellites in SpaceX’s first- and second-generation Starlink networks.

The filing also outlined several waiver requests, including exemptions from certain NGSO milestone and surety bond requirements, as well as flexibility in how orbital planes and communication beams are disclosed, as noted in a Benzinga report. SpaceX noted that these waivers are necessary to support the scale and architecture of the proposed system.

As noted in coverage of the filing, the proposal does not represent an immediate deployment plan, but rather a framework for future space-based computing infrastructure. SpaceX has discussed the idea of moving energy-intensive computing, such as AI workloads, into orbit, where continuous solar power and large physical scale could reduce constraints faced on Earth.

Advertisement
Continue Reading