News
SpaceX’s next Starship starts to take shape as Elon Musk talks next steps
Less than a day after SpaceX successfully hopped a full-scale Starship prototype for the first time, the company has begun stacking the next rocket and Elon Musk is talking next steps.
Almost immediately after Starship SN5 took to the sky on a 150m (500 ft) hop debut, SpaceX CEO Elon Musk was talking about the company’s next near-term goals for the next-generation launch vehicle’s test program. To an extent, he had already offered a rough overview through various interviews and tweets over the last year or so. Aside from continuing to gradually refine Starship and Super Heavy designs and the processes used to manufacture and test those rockets, a few major proofs of concept stand between SpaceX and total confidence in the current architecture.
As far as basic rocketry goes, SpaceX’s 150m Starship hop has functionally proven that the company’s exotic, rule-of-thumb-breaking approach to Starship production and assembly can be feasibly refined into something capable of producing extraordinarily cheap orbital-class rockets. While a massive achievement, it doesn’t guarantee that the rockets produced will be reusable – let alone rapidly and easily reusable.
As of now, it can be safely stated that SpaceX has solved all major challenges involved in routinely and reliably landing and reusing orbital-class rocket boosters (first stages). It’s hard and surprises are always a possibility, but the landing records of Falcon 9 and Falcon Heavy boosters speak for themselves. For the colossal booster Starship needs to reach orbit, the Falcon family’s success means that Super Heavy recovery and reuse is more a question of “when” than “if”.

Starship, on the other hand, is going to offer many different challenges – some unprecedented for SpaceX and others unprecedented in the entire history of spaceflight. For Starship to be able to support a level of reuse compatible with what the Super Heavy booster is likely to achieve, SpaceX will have to create the biggest and most effortlessly reusable orbital-class spacecraft ever built.
Even heavier than NASA’s Space Shuttle orbiter, Starship will also rely almost entirely on the unproven technology of on-orbit cryogenic propellant transfer to reach beyond low Earth orbit (LEO). To survive orbital-velocity reentries while still being rapidly and cheaply reusable, Starship will further have to push the envelope of heat shield technologies. Last but certainly not least, in its current iteration, Starship relies on a truly unprecedented style of recovery to efficiently land back on Earth.


It’s this last bit where CEO Elon Musk’s recent comments and recent activity at SpaceX’s Starship factory come in. According to Musk, SpaceX intends to perform at least several more smaller hops (a la SN5) “to smooth out [the] launch process.” It’s unclear which prototype(s) will be involved in that series of hops but after SpaceX is satisfied with the state of launch operations, the plan is to “go high altitude with body flaps.” Based on past comments, it’s safe to assume that Musk is referring to a plan to launch a Starship to 20 km (~12 mi).
After reaching 20 km, Starship would orient itself belly down – a bit like a skydiver – and quite literally fall its way to ~1 km altitude before attempting an aggressive Raptor-powered pitch-over maneuver and last-second landing. By using Earth’s atmosphere much like a skydiver trying to slow down, Starship will theoretically be able to dramatically reduce the amount of propellant it needs to land.
That high-altitude launch and landing demonstration will also be the first time a Starship truly needs aerodynamic control surfaces (i.e. “body flaps”) to safely complete a flight test. According to NASASpaceflight.com info, Starship SN8 – also the first full-scale prototype to be built out of a different steel alloy – will be the first ship to receive functional flaps and a nosecone. If initial tests go according to plan, SN8 will also be the first ship to attempt a skydiver-style landing as described above. As far as full-scale aerodynamics goes, such a landing is loosely understood at best. For an orbital-class spacecraft, it’s even more of a wildcard.
Regardless, just hours after Starship SN5’s successful hop debut, SpaceX began stacking the first of several already finished Starship SN8 sections. Based on the assembly of past prototypes, the ship’s tank section could reach its full height just a few weeks from now, while subsequent nosecone and flap installations are uncharted territory.






Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla Full Self-Driving (FSD) testing gains major ground in Spain
Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.
Tesla’s Full Self-Driving (Supervised) program is accelerating across Europe, with Spain emerging as a key testing hub under the country’s new ES-AV framework program.
Based on information posted by the Dirección General de Tráfico (DGT), it appears that Tesla is already busy testing FSD in the country.
Spain’s ES-AV framework
Spain’s DGT launched the ES-AV Program in July 2025 to standardize testing for automated vehicles from prototypes to pre-homologation stages. The DGT described the purpose of the program on its official website.
“The program is designed to complement and enhance oversight, regulation, research, and transparency efforts, as well as to support innovation and advancements in automotive technology and industry. This framework also aims to capitalize on the opportunity to position Spain as a pioneer and leader in automated vehicle technology, seeking to provide solutions that help overcome or alleviate certain shortcomings or negative externalities of the current transportation system,” the DGT wrote.
The program identifies three testing phases based on technological maturity and the scope of a company’s operations. Each phase has a set of minimum eligibility requirements, and applicants must indicate which phase they wish to participate in, at least based on their specific technological development.

Tesla FSD tests
As noted by Tesla watcher Kees Roelandschap on X, the DGT’s new framework effectively gives the green flight for nationwide FSD testing. So far, Tesla Spain has a total of 19 vehicles authorized to test FSD on the country’s roads, though it would not be surprising if this fleet grows in the coming months.
The start date for the program is listed at November 27, 2025 to November 26, 2027. The DGT also noted that unlimited FSD tests could be done across Spain on any national route. And since Tesla is already in Phase 3 of the ES-AV Program, onboard safety operators are optional. Remote monitoring would also be allowed.
Tesla’s FSD tests in Spain could help the company gain a lot of real-world data on the country’s roads. Considering the scope of tests that are allowed for the electric vehicle maker, it seems like Spain would be one of the European countries that would be friendly to FSD’s operations. So far, Tesla’s FSD push in Europe is notable, with the company holding FSD demonstrations in Germany, France, and Italy. Tesla is also pushing for national approval in the Netherlands in early 2026.
News
Tesla FSD V14.2.1 is earning rave reviews from users in diverse conditions
Tesla’s Full Self-Driving (Supervised) software continues its rapid evolution, with the latest V14.2.1 update drawing widespread praise.
Tesla’s Full Self-Driving (Supervised) software continues its rapid evolution, with the latest V14.2.1 update drawing widespread praise for its smoother performance and smarter decision-making.
Videos and firsthand accounts from Tesla owners highlight V14.2.1 as an update that improves navigation responsiveness, sign recognition, and overall fluidity, among other things. Some drivers have even described it as “more alive than ever,” hinting at the system eventually feeling “sentient,” as Elon Musk has predicted.
FSD V14.2.1 first impressions
Early adopters are buzzing about how V14.2.1 feels less intrusive while staying vigilant. In a post shared on X, Tesla owner @LactoseLunatic described the update as a “huge leap forward,” adding that the system remains “incredibly assertive but still safe.”
Another Tesla driver, Devin Olsenn, who logged ~600 km on V14.2.1, reported no safety disengagements, with the car feeling “more alive than ever.” The Tesla owner noted that his wife now defaults to using FSD V14, as the system is already very smooth and refined.
Adverse weather and regulatory zones are testing grounds where V14.2.1 shines, at least according to testers in snow areas. Tesla watcher Sawyer Merritt shared a video of his first snowy drive on unplowed rural roads in New Hampshire, where FSD did great and erred on the side of caution. As per Merritt, FSD V14.2.1 was “extra cautious” but it performed well overall.
Sign recognition and freeway prowess
Sign recognition also seemed to show improvements with FSD V14.2.1. Longtime FSD tester Chuck Cook highlighted a clip from his upcoming first-impressions video, showcasing improved school zone behavior. “I think it read the signs better,” he observed, though in standard mode, it didn’t fully drop to 15 mph within the short timeframe. This nuance points to V14.2.1’s growing awareness of temporal rules, a step toward fewer false positives in dynamic environments.
FSD V14.2.1 also seems to excel in high-stress highway scenarios. Fellow FSD tester @BLKMDL3 posted a video of FSD V14.2.1 managing a multi-lane freeway closure due to a police chase-related accident. “Perfectly handles all lanes of the freeway merging into one,” the Tesla owner noted in his post on X.
FSD V14.2.1 was released on Thanksgiving, much to the pleasant surprise of Tesla owners. The update’s release notes are almost identical to the system’s previous iteration, save for one line item read, “Camera visibility can lead to increased attention monitoring sensitivity.”
News
Tesla FSD Supervised ride-alongs in Europe begin in Italy, France, and Germany
The program allows the public to hop in as a non-driving observer to witness FSD navigate urban streets firsthand.
Tesla has kicked off passenger ride-alongs for Full Self-Driving (Supervised) in Italy, France and Germany. The program allows the public to hop in as a non-driving observer to witness FSD navigate urban streets firsthand.
The program, detailed on Tesla’s event pages, arrives ahead of a potential early 2026 Dutch regulatory approval that could unlock a potential EU-wide rollout for FSD.
Hands-Off Demos
Tesla’s ride-along invites participants to “ride along in the passenger seat to experience how it handles real-world traffic & the most stressful parts of daily driving, making the roads safer for all,” as per the company’s announcement on X through its official Tesla Europe & Middle East account.
Sign-ups via localized pages offer free slots through December, with Tesla teams piloting vehicles through city streets, roundabouts and highways.
“Be one of the first to experience Full Self-Driving (Supervised) from the passenger seat. Our team will take you along as a passenger and show you how Full Self-Driving (Supervised) works under real-world road conditions,” Tesla wrote. “Discover how it reacts to live traffic and masters the most stressful parts of driving to make the roads safer for you and others. Come join us to learn how we are moving closer to a fully autonomous future.”
Building trust towards an FSD Unsupervised rollout
Tesla’s FSD (Supervised) ride-alongs could be an effective tool to build trust and get regular car buyers and commuters used to the idea of vehicles driving themselves. By seating riders shotgun, Tesla could provide participants with a front row seat to the bleeding edge of consumer-grade driverless systems.
FSD (Supervised) has already been rolled out to several countries, such as the United States, Canada, Australia, New Zealand, and partially in China. So far, FSD (Supervised) has been received positively by drivers, as it really makes driving tasks and long trips significantly easier and more pleasant.
FSD is a key safety feature as well, which became all too evident when a Tesla driving on FSD was hit by what seemed to be a meteorite in Australia. The vehicle moved safely despite the impact, though the same would likely not be true had the car been driven manually.
