Connect with us

News

SpaceX begins building upgraded Starship prototype

After many unconfirmed signs, a Starship part confirms that SpaceX has begun work on a significantly upgraded prototype. (NASASpaceflight - bocachicagal)

Published

on

A Starship part spotted on July 20th confirms that SpaceX is already well into the process of building a significantly upgraded full-scale prototype.

Following in the footsteps of five or six full-scale ships before it, information published by NASASpaceflight.com suggests that Starship SN8 will be a substantial departure from its predecessors. Thanks to data gathered by testing the Starship SN7 test tank to destruction on June 24th, SpaceX has determined that a different alloy – known as 304L – is superior to the 301 stainless steel all Starship prototypes have been built out of up to now.

SN8 is SpaceX’s response to that discovery. As usual, the company has performed smaller tests before deciding to build a full-scale Starship prototype – identical to all previous SNx prototypes beyond the alloy change – out of 304L stainless steel. As a result, Starship SN8 – once complete – may have the most potential of any prototype built thus far, but its fate will also be more uncertain than most of its predecessors.

(NASASpaceflight – bocachicagal)
After many signs, a Starship part spotted on July 20th oconfirmed that SpaceX has begun work on a significantly upgraded prototype. (NASASpaceflight – bocachicagal)

On June 24th, SpaceX destroyed the SN7 Starship test tank as part of a controlled cryogenic proof test – essentially a pressure test at cryogenic (ultra-cold) temperatures. Departing from routine, CEO Elon Musk never commented on the test, leaving its results shrouded in mystery. According to NASASpaceflight, however, SN7 “achieved a record pressure before it failed.”

Designed to test a different formulation of stainless steel, that success implies that SN7 proved that the 304L alloy will not only be more malleable and forgiving at cryogenic temperatures – but is also more capable overall compared to 301 steel. To beat the record set by the second or third Starship test tank in January or March 2020, SN7 would have had to reach pressures of ~8.6 bar or higher – effectively icing on the cake for the already-demonstrated ~140% safety factor.

Advertisement
The Starship SN7 test tank pictured during its successful cryo proof test. (NASASpaceflight – bocachicagal)
An early grave is just part of the job. (NASASpaceflight – bocachicagal)

A full-scale Starship has yet to survive proof tests at those pressures but Starship SN4 did become the first to complete a full cryo proof, sustaining ~7.5 bar (~110 psi) before it was safely depressurized. Currently on the pad and preparing for an imminent static fire and hop test debut, Starship SN5 is unlikely to put pressure on that record unless that it aces both of the aforementioned trials. Built entirely out of the 304L alloy already proven to be superior to 301, SN8 may well be the golden goose of prototypes.

“The vehicle will feature major upgrades over previous Starship prototypes. SN8 will be built out of 304L stainless steel versus 301 and will receive a fairing, aerosurfaces, and three Raptor engines to allow for a higher-altitude test flight.”

NASASpaceflight.com — July 15th, 2020

The appearance of SN8’s labeled common dome – the dome separating Starship’s liquid oxygen and methane tanks – implies that a variety of other parts spotted over the last few days are also meant for the next full-scale rocket. Mounted on a stand purpose-built for the task, the SN8 common dome will soon be ‘sleeved’ by one or several stacked steel rings, after which it can be welded to the rest of the Starship’s tank. An engine section and thrust structure – likely SN8’s – in the late stages of assembly was spotted three days prior, while an upper tank dome that could be for either SN8 or test tank SN7.1 was captured in the same photos.

(NASASpaceflight – bocachicagal)
(NASASpaceflight – bocachicagal)
(NASASpaceflight – Nomadd)

In the last photo, taken on July 13th, there’s even signs of what could be Starship SN9 – hinted at by the appearance of two Starship engine sections signified by the pattern of welds on their exteriors. Those welds are incontrovertible signs of the stringers used to strengthen Starship engine sections and they haven’t been used anywhere else on past prototypes.

Based on the sheer number of steel rings and domes currently floating around SpaceX’s Boca Chica, Texas Starship factory, SN8 could be a just a week – or even less – away from final stacking operations. If SN5 leaves the pad intact and completes its wet dress rehearsal, static fire, and flight debut without issue, SN8 could be up to bat much sooner than later.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Tesla announces crazy new Full Self-Driving milestone

The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.

Published

on

Credit: Tesla

Tesla has announced a crazy new Full Self-Driving milestone, as it has officially confirmed drivers have surpassed over 8 billion miles traveled using the Full Self-Driving (Supervised) suite for semi-autonomous travel.

The FSD (Supervised) suite is one of the most robust on the market, and is among the safest from a data perspective available to the public.

On Wednesday, Tesla confirmed in a post on X that it has officially surpassed the 8 billion-mile mark, just a few months after reaching 7 billion cumulative miles, which was announced on December 27, 2025.

The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.

The milestone itself is significant, especially considering Tesla has continued to gain valuable data from every mile traveled. However, the pace at which it is gathering these miles is getting faster.

Secondly, in January, Musk said the company would need “roughly 10 billion miles of training data” to achieve safe and unsupervised self-driving. “Reality has a super long tail of complexity,” Musk said.

Training data primarily means the fleet’s accumulated real-world miles that Tesla uses to train and improve its end-to-end AI models. This data captures the “long tail” — extremely rare, complex, or unpredictable situations that simulations alone cannot fully replicate at scale.

This is not the same as the total miles driven on Full Self-Driving, which is the 8 billion miles milestone that is being celebrated here.

The FSD-supervised miles contribute heavily to the training data, but the 10 billion figure is an estimate of the cumulative real-world exposure needed overall to push the system to human-level reliability.

Continue Reading

News

Tesla Cybercab production begins: The end of car ownership as we know it?

While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.

Published

on

Credit: Tesla | X

The first Tesla Cybercab rolled off of production lines at Gigafactory Texas yesterday, and it is more than just a simple manufacturing milestone for the company — it’s the opening salvo in a profound economic transformation.

Priced at under $30,000 with volume production slated for April, the steering-wheel-free, pedal-less Robotaxi-geared vehicle promises to make personal car ownership optional for many, slashing transportation costs to as little as $0.20 per mile through shared fleets and high utilization.

While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.

Let’s examine the positives and negatives of what the Cybercab could mean for passenger transportation and vehicle ownership as we know it.

The Promise – A Radical Shift in Transportation Economics

Tesla has geared every portion of the Cybercab to be cheaper and more efficient. Even its design — a compact, two-seater, optimized for fleets and ride-sharing, the development of inductive charging, around 300 miles of range on a small battery, half the parts of the Model 3, and revolutionary “unboxed” manufacturing — is all geared toward rapid production.

Operating at a fraction of what today’s rideshare prices are, the Cybercab enables on-demand autonomy for a variety of people in a variety of situations.

Tesla ups Robotaxi fare price to another comical figure with service area expansion

It could also be the way people escape expensive and risky car ownership. Buying a vehicle requires expensive monthly commitments, including insurance and a payment if financed. It also immediately depreciates.

However, Cybercab could unlock potential profitability for owning a car by adding it to the Robotaxi network, enabling passive income. Cities could have parking lots repurposed into parks or housing, and emissions would drop as shared electric vehicles would outnumber gas cars (in time).

The first step of Tesla’s massive production efforts for the Cybercab could lead to millions of units annually, turning transportation into a utility like electricity — always available, cheap, and safe.

The Dark Side – Job Losses and Industry Upheaval

With Robotaxi and Cybercab, they present the same negatives as broadening AI — there’s a direct threat to the economy.

Uber, Lyft, and traditional taxis will rely on human drivers. Robotaxi will eliminate that labor cost, potentially displacing millions of jobs globally. In the U.S. alone, ride-hailing accounts for billions of miles of travel each year.

There are also potential ripple effects, as suppliers, mechanics, insurance adjusters, and even public transit could see reduced demand as shared autonomy grows. Past automation waves show job creation lags behind destruction, especially for lower-skilled workers.

Gig workers, like those who are seeking flexible income, face the brunt of this. Displaced drivers may struggle to retrain amid broader AI job shifts, as 2025 estimates bring between 50,000 and 300,000 layoffs tied to artificial intelligence.

It could also bring major changes to the overall competitive landscape. While Waymo and Uber have partnered, Tesla’s scale and lower costs could trigger a price war, squeezing incumbents and accelerating consolidation.

Balancing Act – Who Wins and Who Loses

There are two sides to this story, as there are with every other one.

The winners are consumers, Tesla investors, cities, and the environment. Consumers will see lower costs and safer mobility, while potentially alleviating themselves of awkward small talk in ride-sharing applications, a bigger complaint than one might think.

Elon Musk confirms Tesla Cybercab pricing and consumer release date

Tesla investors will be obvious winners, as the launch of self-driving rideshare programs on the company’s behalf will likely swell the company’s valuation and increase its share price.

Cities will have less traffic and parking needs, giving more room for housing or retail needs. Meanwhile, the environment will benefit from fewer tailpipes and more efficient fleets.

A Call for Thoughtful Transition

The Cybercab’s production debut forces us to weigh innovation against equity.

If Tesla delivers on its timeline and autonomy proves reliable, it could herald an era of abundant, affordable mobility that redefines urban life. But without proactive policies — retraining, safety nets, phased deployment — this revolution risks widening inequality and leaving millions behind.

The real question isn’t whether the Cybercab will disrupt — it’s already starting — it’s whether society is prepared for the economic earthquake it unleashes.

Continue Reading

News

Tesla Model 3 wins Edmunds’ Best EV of 2026 award

The publication rated the Model 3 at an 8.1 out of 10, and with its most recent upgrades and changes, Edmunds says, “This is the best Model 3 yet.”

Published

on

Credit: Tesla

The Tesla Model 3 has won Edmunds‘ Top Rated Electric Car of 2026 award, beating out several other highly-rated and exceptional EV offerings from various manufacturers.

This is the second consecutive year the Model 3 beat out other cars like the Model Y, Audi A6 Sportback E-tron, and the BMW i5.

The car, which is Tesla’s second-best-selling vehicle behind the popular Model Y crossover, has been in the company’s lineup for nearly a decade. It offers essentially everything consumers could want from an EV, including range, a quality interior, performance, and Tesla’s Full Self-Driving suite, which is one of the best in the world.

The publication rated the Model 3 at an 8.1 out of 10, and with its most recent upgrades and changes, Edmunds says, “This is the best Model 3 yet.”

In its Top Rated EVs piece on its website, it said about the Model 3:

“The Tesla Model 3 might be the best value electric car you can buy, combining an Edmunds Rating of 8.1 out of 10, a starting price of $43,880, and an Edmunds-tested range of 338 miles. This is the best Model 3 yet. It is impressively well-rounded thanks to improved build quality, ride comfort, and a compelling combination of efficiency, performance, and value.”

Additionally, Jonathan Elfalan, Edmunds’ Director of Vehicle Testing, said:

“The Model 3 offers just about the perfect combination of everything — speed, range, comfort, space, tech, accessibility, and convenience. It’s a no-brainer if you want a sensible EV.”

The Model 3 is the perfect balance of performance and practicality. With the numerous advantages that an EV offers, the Model 3 also comes in at an affordable $36,990 for its Rear-Wheel Drive trim level.

Continue Reading