Connect with us

News

SpaceX begins building upgraded Starship prototype

After many unconfirmed signs, a Starship part confirms that SpaceX has begun work on a significantly upgraded prototype. (NASASpaceflight - bocachicagal)

Published

on

A Starship part spotted on July 20th confirms that SpaceX is already well into the process of building a significantly upgraded full-scale prototype.

Following in the footsteps of five or six full-scale ships before it, information published by NASASpaceflight.com suggests that Starship SN8 will be a substantial departure from its predecessors. Thanks to data gathered by testing the Starship SN7 test tank to destruction on June 24th, SpaceX has determined that a different alloy – known as 304L – is superior to the 301 stainless steel all Starship prototypes have been built out of up to now.

SN8 is SpaceX’s response to that discovery. As usual, the company has performed smaller tests before deciding to build a full-scale Starship prototype – identical to all previous SNx prototypes beyond the alloy change – out of 304L stainless steel. As a result, Starship SN8 – once complete – may have the most potential of any prototype built thus far, but its fate will also be more uncertain than most of its predecessors.

(NASASpaceflight – bocachicagal)
After many signs, a Starship part spotted on July 20th oconfirmed that SpaceX has begun work on a significantly upgraded prototype. (NASASpaceflight – bocachicagal)

On June 24th, SpaceX destroyed the SN7 Starship test tank as part of a controlled cryogenic proof test – essentially a pressure test at cryogenic (ultra-cold) temperatures. Departing from routine, CEO Elon Musk never commented on the test, leaving its results shrouded in mystery. According to NASASpaceflight, however, SN7 “achieved a record pressure before it failed.”

Designed to test a different formulation of stainless steel, that success implies that SN7 proved that the 304L alloy will not only be more malleable and forgiving at cryogenic temperatures – but is also more capable overall compared to 301 steel. To beat the record set by the second or third Starship test tank in January or March 2020, SN7 would have had to reach pressures of ~8.6 bar or higher – effectively icing on the cake for the already-demonstrated ~140% safety factor.

Advertisement
The Starship SN7 test tank pictured during its successful cryo proof test. (NASASpaceflight – bocachicagal)
An early grave is just part of the job. (NASASpaceflight – bocachicagal)

A full-scale Starship has yet to survive proof tests at those pressures but Starship SN4 did become the first to complete a full cryo proof, sustaining ~7.5 bar (~110 psi) before it was safely depressurized. Currently on the pad and preparing for an imminent static fire and hop test debut, Starship SN5 is unlikely to put pressure on that record unless that it aces both of the aforementioned trials. Built entirely out of the 304L alloy already proven to be superior to 301, SN8 may well be the golden goose of prototypes.

“The vehicle will feature major upgrades over previous Starship prototypes. SN8 will be built out of 304L stainless steel versus 301 and will receive a fairing, aerosurfaces, and three Raptor engines to allow for a higher-altitude test flight.”

NASASpaceflight.com — July 15th, 2020

The appearance of SN8’s labeled common dome – the dome separating Starship’s liquid oxygen and methane tanks – implies that a variety of other parts spotted over the last few days are also meant for the next full-scale rocket. Mounted on a stand purpose-built for the task, the SN8 common dome will soon be ‘sleeved’ by one or several stacked steel rings, after which it can be welded to the rest of the Starship’s tank. An engine section and thrust structure – likely SN8’s – in the late stages of assembly was spotted three days prior, while an upper tank dome that could be for either SN8 or test tank SN7.1 was captured in the same photos.

(NASASpaceflight – bocachicagal)
(NASASpaceflight – bocachicagal)
(NASASpaceflight – Nomadd)

In the last photo, taken on July 13th, there’s even signs of what could be Starship SN9 – hinted at by the appearance of two Starship engine sections signified by the pattern of welds on their exteriors. Those welds are incontrovertible signs of the stringers used to strengthen Starship engine sections and they haven’t been used anywhere else on past prototypes.

Based on the sheer number of steel rings and domes currently floating around SpaceX’s Boca Chica, Texas Starship factory, SN8 could be a just a week – or even less – away from final stacking operations. If SN5 leaves the pad intact and completes its wet dress rehearsal, static fire, and flight debut without issue, SN8 could be up to bat much sooner than later.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Advertisement

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

SpaceX and xAI tapped by Pentagon for autonomous drone contest

The six-month competition was launched in January and is said to carry a $100 million award.

Published

on

Credit: SpaceX/X

SpaceX and its AI subsidiary xAI are reportedly competing in a new Pentagon prize challenge focused on autonomous drone swarming technology, as per a report from Bloomberg News

The six-month competition was launched in January and is said to carry a $100 million award.

Bloomberg reported that SpaceX and xAI are among a select group invited to participate in the Defense Department’s effort to develop advanced drone swarming capabilities. The goal is reportedly to create systems that can translate voice commands into digital instructions and manage fleets of autonomous drones.

Neither SpaceX, xAI, nor the Pentagon’s Defense Innovation Unit has commented on the report, and Reuters said it could not independently verify the details.

Advertisement

The development follows SpaceX’s recent acquisition of xAI, which pushed the valuation of the combined companies to an impressive $1.25 trillion. The reported competition comes as SpaceX prepares for a potential initial public offering later this year.

The Pentagon has been moving to speed up drone deployment and expand domestic manufacturing capacity, while also seeking tools to counter unauthorized drone activity around airports and major public events. Large-scale gatherings scheduled this year, including the FIFA World Cup and America250 celebrations, have heightened focus on aerial security.

The reported challenge aligns with broader Defense Department investments in artificial intelligence. Last year, OpenAI, Google, Anthropic, and xAI secured Pentagon contracts worth up to $200 million each to advance AI capabilities across defense applications.

Elon Musk previously joined AI and robotics researchers in signing a 2015 open letter calling for a ban on offensive autonomous weapons. In recent years, however, Musk has spoken on X about the strengths of drone technologies in combat situations.

Advertisement
Continue Reading

News

Doug DeMuro names Tesla Model S the Most Important Car of the last 30 years

In a recent video, the noted reviewer stated that the choice was “not even a question.”

Published

on

Popular automotive reviewer and YouTuber Doug DeMuro has named the 2012 Tesla Model S as the most important car of the last 30 years.

In a recent video, the noted reviewer stated that the choice was “not even a question,” arguing that the Model S did more to change the trajectory of the auto industry than any other vehicle released since the mid-1990s.

“Unquestionably in my mind, the number one most important car of the last 30 years… it’s not even a question,” DeMuro said. “The 2012 Tesla Model S. There is no doubt that that is the most important car of the last 30 years.”

DeMuro acknowledged that electric vehicle adoption has faced recent headwinds. Still, he maintained that long-term electrification is inevitable.

Advertisement

“If you’re a rational person who’s truthful with yourself, you know that the future is electric… whether it’s 10, 20, 30 years, the future will be electric, and it was the Model S that was the very first car that did that truthfully,” he said.

While earlier EVs like the Nissan Leaf and Chevrolet Volt arrived before the Model S, DeMuro argued that they did not fundamentally shift public perception. The Model S proved that EVs “could be cool, could be fast, could be luxurious, could be for enthusiasts.” It showed that buyers did not have to make major compromises to drive electric.

He also described the Model S as a cultural turning point. Tesla became more than a car company. The brand expanded into Superchargers, home energy products, and a broader tech identity.

DeMuro noted that the Leaf and Volt “made a huge splash and taught us that it was possible.” However, he drew a distinction between being first and bringing a technology into the mainstream.

Advertisement

“It’s rarely about the car that does it first. It’s about the car that brings it into the mainstream,” he said. “The Model S was the car that actually won the game even though the Leaf and Volt scored the first.”

He added that perhaps the Model S’ most surprising achievement was proving that a new American automaker could succeed. For decades, industry observers believed the infrastructure and capital requirements made that nearly impossible.

“For decades, it was generally agreed that there would never be another competitive American car company because the infrastructure and the investment required to start up another American car company as just too challenging… It was just a given basically that you couldn’t do it. And not only did they go it, but they created a cultural icon… That car just truly changed the world,” he said. 

Advertisement
Continue Reading

Elon Musk

Elon Musk doubles down on Tesla Cybercab timeline once again

“Cybercab, which has no pedals or steering wheel, starts production in April,” Musk said.

Published

on

Credit: @JT59052914/X

CEO Elon Musk doubled down once again on the timeline of production for the Tesla Cybercab, marking yet another example of the confidence he has in the company’s ability to meet the aggressive timeline for the vehicle.

It is the third time in the past six months that Musk has explicitly stated Cybercab will enter production in April 2026.

On Monday morning, Musk reiterated that Cybercab will enter its initial manufacturing phase in April, and that it would not have any pedals or a steering wheel, two things that have been speculated as potential elements of the vehicle, if needed.

Musk has been known to be aggressive with timelines, and some products have been teased for years and years before they finally come to fruition.

One of perhaps the biggest complaints about Musk is the fact that Tesla does not normally reach the deadlines that are set: the Roadster, Semi, and Unsupervised Full Self-Driving suite are a few of those that have been given “end of this year” timelines, but have not been fulfilled.

Nevertheless, many are able to look past this as part of the process. New technology takes time to develop, but we’d rather not hear about when, and just the progress itself.

However, the Cybercab is a bit different. Musk has said three times in the past six months that Cybercab will be built in April, and this is something that is sort of out of the ordinary for him.

In December 2025, he said that Tesla was “testing the production system” of the vehicle and that “real production ramp starts in April.

Elon Musk shares incredible detail about Tesla Cybercab efficiency

On January 23, he said that “Cybercab production starts in April.” He did the same on February 16, marking yet another occasion that Musk has his sights set on April for initial production of the vehicle.

Musk has also tempered expectations for the Cybercab’s initial production phase. In January, he noted that Cybercab would be subjected to the S-curve-type production speed:

“…initial production is always very slow and follows an S-curve. The speed of production ramp is inversely proportionate to how many new parts and steps there are. For Cybercab and Optimus, almost everything is new, so the early production rate will be agonizingly slow, but eventually end up being insanely fast.”

Cybercab will be a huge part of Tesla’s autonomous ride-sharing plans moving forward.

Continue Reading