Connect with us

News

SpaceX aborts several Starship static fire attempts, rolls test tank to the pad

Still plagued by aborts and delays, Starship SN9 sits to the right of test tank SN7.2 on January 20th. (NASASpaceflight - bocachicagal)

Published

on

Accidentally producing the polar opposite of Starship serial number 9 (SN9) completing a trio of Raptor ignition tests in four hours last week, SpaceX has now suffered three back-to-back static fire aborts on January 20th.

On January 13th, Starship SN9 somewhat successfully ignited its Raptor engines three separate times with zero hands-on human intervention or inspection. While an impressive feat, SpaceX CEO Elon Musk soon revealed that two of the rocket’s three engines were damaged during the test campaign. NASASpaceflight.com later reported that the company had detected an issue with one Raptor after the first three-engine static fire, ultimately firewalling it and performing the next two static fires with only two engines.

SpaceX initially allotted five days to replace the two damaged Raptors (SN44 & SN46), scheduling road closures (a telltale sign of test plans) on January 18th, 19th, and 20th. Windows on the 18th and 19th went by with zero attempts. Finally, on the 20th, SpaceX kicked off Starship SN9’s first real test attempt since the engine swap around 2pm but it was aborted by 3pm.

After an extremely brisk recycle, Starship likely made it less than a minute away from ignition but the second attempt was ultimately aborted around 3:40 pm.

Advertisement

Two hours later, after SpaceX extended the end of its road closure from 5pm to 8pm, Starship SN9’s third Raptor static fire attempt was also aborted – once again just a minute or less away from ignition.

SpaceX held Starship SN9 for another hour or so after the third abort but ultimately began final detanking and depressurization around 6:50 pm, marking the end of the day’s attempts.

It’s impossible to say what caused Wednesday’s back-to-back-to-back aborts or if the three instances were connected. While potentially frustrating to watch from the sidelines, it’s crucial to remember that the public is getting a truly unprecedented continuous view of SpaceX’s process of developing and refining a world-class launch vehicle. Additionally, every abort Starship suffers should theoretically produce volumes of valuable data that both Starship and Raptor teams can use to better understand how to design, build, test, and operate the cutting-edge vehicle and its engines.

More likely than not, SpaceX is leaning towards caution (and thus cautious hardware and software limits) while attempting to prepare Starship SN9 for its true data-gathering purpose – an SN8-style high-altitude launch and landing attempt.

Advertisement
Starship SN8’s launch and (explosive) landing debut. SN9’s goal is to replicate the feat without the last-second explosion. (Richard Angle)

SpaceX is currently scheduled to try again with another series of Starship SN9 static fire attempts between 8am and 5pm CST (UTC-6) on Thursday, January 21st.

Meanwhile, prior to SN9’s multiple Wednesday aborts, SpaceX rolled the latest in a series of Starship ‘test tanks’ from the factory to the launch pad. A team rapidly strapped the tank to the concrete pad and connected it to ground support equipment in preparation for a series of tests that will likely end with SpaceX intentionally pressurizing the tank until its bursts. If successful, it will open the door for future Starships to save weight by cutting steel skin thickness from 4mm to 3mm.

Stay tuned for updates on both active test campaigns.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Cybercab spotted with interesting charging solution, stimulating discussion

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Published

on

Credit: What's Inside | X

Tesla Cybercab units are being tested publicly on roads throughout various areas of the United States, and a recent sighting of the vehicle’s charging port has certainly stimulated some discussions throughout the community.

The Cybercab is geared toward being a fully-autonomous vehicle, void of a steering wheel or pedals, only operating with the use of the Full Self-Driving suite. Everything from the driving itself to the charging to the cleaning is intended to be operated autonomously.

But a recent sighting of the vehicle has incited some speculation as to whether the vehicle might have some manual features, which would make sense, but let’s take a look:

The port is located in the rear of the vehicle and features a manual door and latch for plug-in, and the video shows an employee connecting to a Tesla Supercharger.

Now, it is important to remember these are prototype vehicles, and not the final product. Additionally, Tesla has said it plans to introduce wireless induction charging in the future, but it is not currently available, so these units need to have some ability to charge.

However, there are some arguments for a charging system like this, especially as the operation of the Cybercab begins after production starts, which is scheduled for April.

Wireless for Operation, Wired for Downtime

It seems ideal to use induction charging when the Cybercab is in operation. As it is for most Tesla owners taking roadtrips, Supercharging stops are only a few minutes long for the most part.

The Cybercab would benefit from more frequent Supercharging stops in between rides while it is operating a ride-sharing program.

Tesla wireless charging patent revealed ahead of Robotaxi unveiling event

However, when the vehicle rolls back to its hub for cleaning and maintenance, standard charging, where it is plugged into a charger of some kind, seems more ideal.

In the 45-minutes that the car is being cleaned and is having maintenance, it could be fully charged and ready for another full shift of rides, grabbing a few miles of range with induction charging when it’s out and about.

Induction Charging Challenges

Induction charging is still something that presents many challenges for companies that use it for anything, including things as trivial as charging cell phones.

While it is convenient, a lot of the charge is lost during heat transfer, which is something that is common with wireless charging solutions. Even in Teslas, the wireless charging mat present in its vehicles has been a common complaint among owners, so much so that the company recently included a feature to turn them off.

Production Timing and Potential Challenges

With Tesla planning to begin Cybercab production in April, the real challenge with the induction charging is whether the company can develop an effective wireless apparatus in that short time frame.

It has been in development for several years, but solving the issue with heat and energy loss is something that is not an easy task.

In the short-term, Tesla could utilize this port for normal Supercharging operation on the Cybercab. Eventually, it could be phased out as induction charging proves to be a more effective and convenient option.

Continue Reading

News

Tesla confirms that it finally solved its 4680 battery’s dry cathode process

The suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Published

on

tesla 4680
Image used with permission for Teslarati. (Credit: Tom Cross)

Tesla has confirmed that it is now producing both the anode and cathode of its 4680 battery cells using a dry-electrode process, marking a key breakthrough in a technology the company has been working to industrialize for years. 

The update, disclosed in Tesla’s Q4 and FY 2025 update letter, suggests the company has finally resolved one of the most challenging aspects of its next-generation battery cells.

Dry cathode 4680 cells

In its Q4 and FY 2025 update letter, Tesla stated that it is now producing 4680 cells whose anode and cathode were produced during the dry electrode process. The confirmation addresses long-standing questions around whether Tesla could bring its dry cathode process into sustained production.

The disclosure was highlighted on X by Bonne Eggleston, Tesla’s Vice President of 4680 batteries, who wrote that “both electrodes use our dry process.”

Advertisement

Tesla first introduced the dry-electrode concept during its Battery Day presentation in 2020, pitching it as a way to simplify production, reduce factory footprint, lower costs, and improve energy density. While Tesla has been producing 4680 cells for some time, the company had previously relied on more conventional approaches for parts of the process, leading to questions about whether a full dry-electrode process could even be achieved.

4680 packs for Model Y

Tesla also revealed in its Q4 and FY 2025 Update Letter that it has begun producing battery packs for certain Model Y vehicles using its in-house 4680 cells. As per Tesla: 

“We have begun to produce battery packs for certain Model Ys with our 4680 cells, unlocking an additional vector of supply to help navigate increasingly complex supply chain challenges caused by trade barriers and tariff risks.”

The timing is notable. With Tesla preparing to wind down Model S and Model X production, the Model Y and Model 3 are expected to account for an even larger share of the company’s vehicle output. Ensuring that the Model Y can be equipped with domestically produced 4680 battery packs gives Tesla greater flexibility to maintain production volumes in the United States, even as global battery supply chains face increasing complexity.

Advertisement
Continue Reading

Elon Musk

Tesla Giga Texas to feature massive Optimus V4 production line

This suggests that while the first Optimus line will be set up in the Fremont Factory, the real ramp of Optimus’ production will happen in Giga Texas.

Published

on

Credit: Tesla/YouTube

Tesla will build Optimus 4 in Giga Texas, and its production line will be massive. This was, at least, as per recent comments by CEO Elon Musk on social media platform X.  

Optimus 4 production

In response to a post on X which expressed surprise that Optimus will be produced in California, Musk stated that “Optimus 4 will be built in Texas at much higher volume.” This suggests that while the first Optimus line will be set up in the Fremont Factory, and while the line itself will be capable of producing 1 million humanoid robots per year, the real ramp of Optimus’ production will happen in Giga Texas. 

This was not the first time that Elon Musk shared his plans for Optimus’ production at Gigafactory Texas. During the 2025 Annual Shareholder Meeting, he stated that Giga Texas’ Optimus line will produce 10 million units of the humanoid robot per year. He did not, however, state at the time that Giga Texas would produce Optimus V4. 

“So we’re going to launch on the fastest production ramp of any product of any large complex manufactured product ever, starting with building a one-million-unit production line in Fremont. And that’s Line one. And then a ten million unit per year production line here,” Musk stated. 

Advertisement

How big Optimus could become

During Tesla’s Q4 and FY 2025 earnings call, Musk offered additional context on the potential of Optimus. While he stated that the ramp of Optimus’ production will be deliberate at first, the humanoid robot itself will have the potential to change the world. 

“Optimus really will be a general-purpose robot that can learn by observing human behavior. You can demonstrate a task or verbally describe a task or show it a task. Even show it a video, it will be able to do that task. It’s going to be a very capable robot. I think long-term Optimus will have a very significant impact on the US GDP. 

“It will actually move the needle on US GDP significantly. In conclusion, there are still many who doubt our ambitions for creating amazing abundance. We are confident it can be done, and we are making the right moves technologically to ensure that it does. Tesla, Inc. has never been a company to shy away from solving the hardest problems,” Musk stated. 

Advertisement
Continue Reading