Connect with us

SpaceX

SpaceX CEO Elon Musk proposes Starship, Starlink tech for Solar System tour

Starship ignites its Raptor engines during a close approach to Titan. (NASA/SpaceX/Teslarati)

Published

on

SpaceX CEO Elon Musk has proposed an unusual approach to conducting a robotic survey of the Solar System’s major outer planets, asteroids, and comets, requiring a stripped-down Starship with a minimalist payload of Starlink satellites modified for interplanetary cruises and high-resolution cameras.

To enable this arrangement, it sounds like an expendable variant of Starship would have to be designed and built, cutting as much extraneous mass as possible to put as much energy as physically possible into its payloads. Outer planets – those lying beyond the Solar System’s main asteroid belt – are a minimum of 400 million miles (~650 million km) from Earth and stretch out to bodies like 2014 MU69 (below) at 4+ billion miles (6.8+ billion km) beyond Earth’s orbit. To travel those truly absurd distances, the time-to-destination can often be measured in decades, a timeframe that is physically impossible to shrink without hugely powerful rockets like BFR. Even then, SpaceX would face major hurdles to pull off Musk’s impromptu mission design.

New Horizons, the tiny but amazing spacecraft responsible for the first-ever close-up photos of Pluto and (more recently) the bizarre MU69 comet/asteroid, is perhaps the best categorical example of what Musk is proposing. Weighing less than 480 kg (1060 lb) and powered by a radioisotope generator (RTG), the spacecraft was launched in January 2006 and – after a single gravity assist around Jupiter – flew by Pluto a bit less than ten years later in July 2015, traveling a blistering ~13.8 km/s (8.6 mi/s).

After traveling several billion miles over nearly a decade, New Horizons completed its main mission, returning spectacular views of the unexpectedly exotic Pluto. (NASA/JPL)

Coincidentally, at least the first prototypes of SpaceX’s Starlink satellite constellation weighed around 400 kg (880 lb) during their March 2018 launch, just shy of New Horizons’ own dry mass. Major differences abound, however. Most notably, Starlink satellites will be powered by solar arrays optimized for energy generation at Earth’s distance from the sun, compared to New Horizons’ RTG reactor. At distances beyond Saturn, reliance on solar power would be an extraordinary challenge for any spacecraft hoping to do more than simply survive. For example, due to certain unforgiving laws of physics, New Horizons would receive – quite literally – 0.06% the solar energy per unit of area at Pluto.

To produce the scant ~300 Watts New Horizon receives from its nuclear power source, a single Starlink satellite would need a minimum of 1400 m^2 (~15,000 ft^2) of high-efficiency solar panels to survive and power a minimal suite of instruments and communications hardware. Assuming an extraordinary 170 g/m^2 solar array as proposed by Alta Devices, a Starlink satellite would need solar cells weighing no less than 250 kg (550 lb) total to operate at Pluto, a mass that absolutely does not factor in the complex mechanisms necessary to deploy a third of an acre of solar panels from an area of just a few cubic meters.

Frankly put, solar-powered exploration beyond the orbit of Jupiter and perhaps Saturn becomes almost inconceivably difficult. Further, the above numbers don’t even take into account each Starlink spacecraft’s electric thrusters, which would need several times more solar panels or massive batteries (themselves needing heaters) to operate at an optimal power level for long, uninterrupted periods of time, a necessity for electric propulsion. Several billion miles closer to the sun, in the main asteroid belt or around the gas giants Jupiter and Saturn, solar power is still extremely challenging but not impossible. NASA’s Juno spacecraft, the first solar-powered vehicle to visit the outer planets, uses solar arrays with an area of 72 m^2 (800 ft^2) to produce less than 500 Watts of power around Jupiter, compared to the ~14 kW they could produce around Earth.

Juno’s solar arrays are an impressive ~28% efficient but still weigh 340 kg (750 lb) and produce less than 500 Watts of power around Jupiter. (NASA)

At the end of the day, SpaceX’s Starlink satellites and Starship-based boost stage would need to undergo radical (and thus expensive) redesigns to accomplish such an ambitious ‘tour’ of the Outer Solar System, quite possibly also requiring the development and integration of wholly new technologies and exploration strategies to get off the ground. While the challenges are immense, the fact that Mr. Musk is already expressing interest in supporting such an exploratory, science-focused mission inspires confidence in the many future benefits that could soon be derived from Starlink and Starship, if successfully developed. Assuming missions that remain within the Inner Solar System, an exploration architecture as described by Musk is already readily doable and wouldn’t need the major modifications and leaps necessary for Outer Solar System ventures. Possible destinations where it could be practical include the Moon, Mars, Venus, the main asteroid belt (i.e. Ceres, Vesta, etc.), and many others.

If SpaceX can find a way to get both Starlink and Starship off the ground and into operational configurations, the future of space exploration – both human and robotic – could be extraordinarily bright.

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

SpaceX set to launch Axiom’s mission for diabetes research on the ISS

Axiom’s Ax-4 will test CGMs & insulin stability in microgravity—potentially reshaping diabetes care for Earth & future astronauts.

Published

on

(Credit: SpaceX)

Axiom Space’s Ax-4 mission is set to launch on a SpaceX Falcon 9 rocket. Ax-4 will advance diabetes research in microgravity, marking a milestone for astronaut health.

Axiom Space’s fourth crewed mission is scheduled to launch with SpaceX on May 29 from NASA’s Kennedy Space Center in Florida. The Ax-4 mission will carry a diverse crew and a record-breaking scientific payload to the International Space Station (ISS).

The Ax-4 crew is led by Axiom’s Peggy Whitson and includes Shubhanshu Shukla from India, Sławosz Uznański from the European Space Agency, and Tibor Kapu from Hungary. The mission represents firsts for India, Hungary, and Poland, with Uznański being Poland’s first astronaut in over 40 years.

Ax-4 will conduct nearly 60 science investigations from 31 countries during its two-week ISS stay. A key focus is the “Suite Ride” initiative, a collaboration with Burjeel Holdings to study diabetes management in microgravity.

“The effort marks a significant milestone in the long-term goal of supporting future astronauts with insulin-dependent diabetes (IDDM), a condition historically deemed disqualifying for spaceflight,” Axiom noted. The mission will test Continuous Glucose Monitors (CGMs) and insulin stability to assess their performance in space.

Advertisement

Axiom explained that testing the behavior of CGMs and insulin delivery technologies in microgravity and observing circadian rhythm disruption could help diabetes experts understand how CGMs and insulin pens can improve diabetes monitoring and care in remote or underserved areas on Earth. The research could benefit diabetes management in isolated regions like oil rigs or rural areas.

The mission’s findings on insulin exposure and CGM performance could pave the way for astronauts with diabetes to safely participate in spaceflight. As Axiom and SpaceX push boundaries, Ax-4’s diabetes research underscores the potential for space-based innovations to transform healthcare on Earth and beyond.

Continue Reading

Elon Musk

EU considers SES to augment Starlink services

The EU considers funding SES to support Starlink. With MEO satellites already serving NATO, SES could be key in Europe’s space autonomy push.

Published

on

EU-ses-starlink-augment
(Credit: SES)

European satellite company SES is negotiating with the European Union (EU) and other governments to complement SpaceX’s Starlink, as Europe seeks home-grown space-based communication solutions. The talks aim to bolster regional resilience amid growing concerns over reliance on foreign providers.

In March, the European Commission contacted SES and France’s Eutelsat to assess their potential role if American-based Starlink access for Ukraine was disrupted. The European Commission proposed funding EU-based satellite operators to support Kyiv. Ukraine is considering alternatives to Starlink over concerns about Elon Musk’s reliability.

Arthur De Liedekerke of Rasmussen Global warned, “Elon Musk is, in fact, the guardian of Ukraine’s connectivity on the battlefield. And that’s a strategic vulnerability.” However, SpaceX’s Starlink constellation is leagues ahead of any competition in the EU.

“Now the discussions are much more strategic in nature. They’re much more mid-term, long-term. And what we’re seeing is all of the European governments are serious about increasing their defense spending. There are alternatives, not to completely replace Starlink, that’s not possible, but to augment and complement Starlink,” SES CEO Adel Al-Saleh told Reuters.

Advertisement

SES operates about 70 satellites, including over 20 medium Earth orbit (MEO) units at 8,000 km. The company provides high-speed internet for government, military, and underserved areas. It plans to expand its MEO fleet to 100, enhancing secure communications for NATO and the Pentagon.

“The most significant demand (for us) is European nations investing in space, much more than what they did before,” Al-Saleh said.

Competition from Starlink, Amazon’s Kuiper, and China’s SpaceSail, with their extensive low-Earth orbit constellations, underscores Europe’s push for independence.

“It is not right to say they just want to avoid Starlink or the Chinese. They want to avoid being dependent on one or two providers. They want to have flexibility,” Al-Saleh noted.

SES’s discussions reflect Europe’s strategic shift toward diversified satellite networks, balancing reliance on Starlink with regional capabilities. As governments ramp up defense spending, SES aims to play a pivotal role in complementing global providers, ensuring robust connectivity for military and civilian needs across the continent.

Advertisement
Continue Reading

News

Amazon launches Kuiper satellites; Can it rival Starlink?

With 27 satellites in orbit, Amazon kicks off its $10B plan to deliver global broadband. Can Bezos’ Kuiper take on Musk’s Starlink?

Published

on

amazon-kuiper-satellite-starlink-rival
(Credit: Amazon)

Amazon’s Project Kuiper launched its first 27 satellites on Monday, marking the start of a $10 billion effort that could compete with SpaceX’s Starlink with a global broadband internet network.

Amazon’s Kuiper satellites launched aboard a United Launch Alliance Atlas V rocket from Cape Canaveral, Florida. Project Kuiper’s recent launch is the initial step toward deploying Amazon’s 3,236 satellites for low-Earth orbit connectivity. Amazon’s satellite launch was initially set for April 9 but was delayed due to bad weather.  

Now that the Kuiper satellites have been launched, Amazon is expected to publicly confirm contact with the satellites from its mission operations center in Redmond, Washington. The company aims to start offering Kuiper services to customers later this year. Project Kuiper was unveiled in 2019 and targets consumers, businesses, and governments who need reliable internet service, similar to Starlink.

Amazon has a deadline from the U.S. Federal Communications Commission to deploy 1,618 satellites by mid-2026. Analysts suggest the company may require an extension to its Kuiper satellite deployment deadline due to the project’s year-long delay from its planned 2024 start.

United Launch Alliance could conduct up to five more Kuiper missions this year, according to ULA CEO Tory Bruno. Amazon noted in a 2020 FCC filing that Kuiper services could begin with 578 satellites, initially covering northern and southern regions.

Advertisement

Kuiper’s launch pits Amazon against SpaceX’s Starlink and telecom giants like AT&T and T-Mobile, with a focus on underserved rural areas.

“There’s an insatiable demand for the internet,” Amazon Executive Chairman Jeff Bezos told Reuters in January. “There’s room for lots of winners there. I predict Starlink will continue to be successful, and I predict Kuiper will be successful as well.”

Global interest in satellite alternatives is rising. Ukraine is exploring Starlink alternatives with the European Union (EU), driven by concerns over Elon Musk. Germany’s military, Bundeswehr, also plans its own constellation to ensure independent communications. However, like Amazon’s Kuiper Project, EU options lag behind Starlink.

Amazon’s consumer expertise and cloud computing infrastructure give Kuiper a competitive edge despite Starlink’s market lead. As Kuiper ramps up launches, its success could reshape broadband access while challenging SpaceX’s dominance in the satellite internet race.

Advertisement
Continue Reading

Trending