Connect with us

SpaceX

SpaceX’s Starship, Starhopper prototypes continue slow and steady progress

Published

on

The last few weeks of SpaceX’s work on Starship and Starhopper prototypes has been marked by less visible progress relative to the past few months. The changes that are visible, however, confirm that its Boca Chica engineers are working around the clock to complete the first orbital Starship prototype.

At the same time, it appears that SpaceX’s South Texas facilities are preparing for a rapid period of expansion and build-up. New work around the ad-hoc Starhopper pad has recently begun, while construction of a second concrete jig for concurrent prototype fabrication and what will likely be a more permanent hangar and control facility are also ramping up. Things have been quiet news-wise for SpaceX’s McGregor and Hawthorne facilities but there is reason to believe that Raptor production and testing is going smoothly.

Starship Alpha

The most obvious visible progress made in April is centers around SpaceX’s first orbital Starship prototype, soon to begin its third month of active construction. As of mid-March, the shells of two large steel barrel sections – together about 18 m (60 ft) tall – were fully erected at the build site, with a handful of other sections in various states of welding. The height of those two cylinders has remained unchanged since then but it’s safe to assume that a ton of work has been going on inside them, invisible to anyone viewing from public perspectives since drones were effectively banned in March. In other words, the two pieces – most likely the barrel sections of Starship’s liquid methane and liquid oxygen (LOX) tanks – are likely being carefully transformed into actual propellant tanks.

A look inside SpaceX’s 2017 version of a 9m-diameter Starship.

There is also a good reason for their height differential: the larger (LOX) section is almost exactly a third larger than the small section (methane) in part because of the physical reality that Starship will need almost exactly 33% more LOX than methane by volume. Large propellant tanks – particularly those meant for cryogenic fluids and spaceflight applications – are often quite complex, with the vast majority of that complexity happening under the hood. The above render was made while SpaceX was still planning on carbon fiber tanks and also appears to be significantly simplified, but it still offers a small look at some of that complexity.

Aside from successfully completing thousands of welds throughout the assembly, a lot of the effort of building an advanced tank is put into plumbing – both internal and external – needed to load, unload, pressurize, depressurize, and generally manage cryogenic (i.e. super cold) liquid propellant. SpaceX decided to utilize a partial balloon tank design to keep the steel skins of its stainless steel Starship and Super Heavy as thin as possible, adding yet another level of internal work due to the need for stringers and longerons on top of baffles and hardware to mount COPVs or header tanks.

Starship glows red and white-hot as it reenters Earth’s atmosphere. (SpaceX)
SpaceX already uses stringers (the grid-like structure) in Falcon 9’s RP-1 tank. (SpaceX)

Adding further complexity to the internal structure of Starship is the presence of major aerodynamic surfaces and landing legs, both of which will need to survive extreme stresses if they are to function as intended. Those structures must be aerodynamically streamlined and attach to the outside of Starship’s hull, likely requiring significant structural reinforcements both inside the spacecraft’s nose and rearmost propellant tank.

Super Heavy?

SpaceX began construction of a second concrete fabrication jig just a handful of days ago. Effectively a copy of a jig occupied with the larger of the two barrel sections of the orbital Starship prototype, the simple structure acts as a mount and includes a large door that allows scissor lifts to get inside the steel structure. The new jig is being built directly adjacent to Starship’s smaller barrel section, suggesting that it could simply be a way to concurrently work on both the LOX and methane tanks. Given the inherent simplicity of a concrete jig, it could also end up being used to support the simultaneous assembly and integration of the first Super Heavy booster prototype.

Back in December 2018, SpaceX CEO Elon Musk indicated that the first Super Heavy prototype would start production in “spring” (i.e. NET April 2019). Musk has also indicated that Starship and Super Heavy will be simultaneously built both in Boca Chica, Texas and Cape Canaveral, Florida. In general, SpaceX is clearly beginning another round of expansion and improvement for its Boca Chica facilities, including the new concrete jig and an entirely new building on the same plot of land.

SpaceX began filling the new jig with concrete on April 24th. (NASASpaceflight – bocachicagal)

Starhopper

Last but not least is SpaceX’s Starhopper prototype. After completing an inaugural round of multiple wet dress rehearsals (WDRs) and two Raptor static fires/hops, SpaceX technicians removed the vehicle’s lone Raptor engine on April 8th. Starhopper has remained more or less inactive in the last two weeks, aside from some work going on inside the vehicle (per the open access hatch).

Without a Raptor engine, there is admittedly not a whole lot that SpaceX can do with Starhopper, aside from additional WDRs if the first handful of tests were not enough. Instead, some minor work has been going on around the Hopper’s ad hoc pad, mainly taking the appearance of dirtmoving. Without aerial views, its hard to tell what exactly is taking shape, but it’s safe to say that Starhopper is simply waiting for additional Raptors to be produced, tested, and delivered to Boca Chica. Once more Raptors are ready, it’s understood that SpaceX will move into multi-engine (likely 3+) hop tests, perhaps loosing Starhopper from its tethers.

Advertisement

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Elon Musk reveals SpaceX’s target for Starship’s 10th launch

Elon Musk has revealed SpaceX’s target timeline for the next Starship launch, which will be the tenth in program history.

Published

on

Credit: SpaceX

Elon Musk has revealed SpaceX’s target timeline for the next Starship launch, which will be the tenth in program history.

Musk says SpaceX is aiming for a timeline of roughly three weeks from now, which would come about ten weeks after the previous launch.

Coincidentally, it would bring the two launches 69 days apart, and if you know anything about Elon Musk, that would be an ideal timeline between two launches.

SpaceX is coming off a test flight in which it lost both the Super Heavy Booster and the Upper Stage in the previous launch. The Super Heavy Booster was lost six minutes and sixteen seconds into the flight, while SpaceX lost communication with the Ship at 46 minutes and 48 seconds.

Musk is aiming for the tenth test flight to take place in early August, he revealed on X:

This will be SpaceX’s fourth test flight of the Starship program in 2025, with each of the previous three flights bringing varying results.

IFT-7 in January brought SpaceX its second successful catch of the Super Heavy Booster in the chopstick arms of the launch tower. The ship was lost after exploding during its ascent over the Turks and Caicos Islands.

IFT-8 was on March 6, and SpaceX caught the booster once again, but the Upper Stage was once again lost.

The most recent flight, IFT-9, took place on May 27 and featured the first reused Super Heavy Booster. However, both the Booster and Upper Stage were lost.

The Federal Aviation Administration (FAA) hit SpaceX with a mishap investigation for Flight 9 on May 30.

Continue Reading

News

SpaceX’s Crew-11 mission targets July 31 launch amid tight ISS schedule

The flight will lift off from Launch Complex 39A at Kennedy Space Center in Florida.

Published

on

spacex-dragon-axiom-ax-4-mission-iss
(Credit: SpaceX)

NASA and SpaceX are targeting July 31 for the launch of Crew-11, the next crewed mission to the International Space Station (ISS). The flight will lift off from Launch Complex 39A at Kennedy Space Center in Florida, using the Crew Dragon Endeavour and a Falcon 9 booster.

Crew Dragon Endeavour returns

Crew-11 will be the sixth flight for Endeavour, making it SpaceX’s most experienced crew vehicle to date. According to SpaceX’s director of Dragon mission management, Sarah Walker, Endeavour has already carried 18 astronauts representing eight countries since its first mission with NASA’s Bob Behnken and Doug Hurley in 2020, as noted in an MSN report.

“This Dragon spacecraft has successfully flown 18 crew members representing eight countries to space already, starting with (NASA astronauts) Bob (Behnken) and Doug (Hurley) in 2020, when it returned human spaceflight capabilities to the United States for the first time since the shuttle retired in July of 2011,” Walker said.

For this mission, Endeavour will debut SpaceX’s upgraded drogue 3.1 parachutes, designed to further enhance reentry safety. The parachutes are part of SpaceX’s ongoing improvements to its human-rated spacecraft, and Crew-11 will serve as their first operational test.

The Falcon 9 booster supporting this launch is core B1094, which has launched in two previous Starlink missions, as well as the private Ax-4 mission on June 25, as noted in a Space.com report.

Advertisement

The four-members of Crew-11 are NASA astronauts Zena Cardman and Mike Fincke, as well as Japan’s Kimiya Yui and Russia’s Oleg Platonov.

Tight launch timing

Crew-11 is slated to arrive at the ISS just as NASA coordinates a sequence of missions, including the departure of Crew-10 and the arrival of SpaceX’s CRS-33 mission. NASA’s Bill Spetch emphasized the need for careful planning amid limited launch resources, noting the importance of maintaining station altitude and resupply cadence.

“Providing multiple methods for us to maintain the station altitude is critically important as we continue to operate and get the most use out of our limited launch resources that we do have. We’re really looking forward to demonstrating that capability with (CRS-33) showing up after we get through the Crew-11 and Crew-10 handover,” Spetch stated.

Continue Reading

News

SpaceX launches Ax-4 mission to the ISS with international crew

The SpaceX Falcon 9 launched Axiom’s Ax-4 mission to ISS. Ax-4 crew will conduct 60+ science experiments during a 14-day stay on the ISS.

Published

on

spacex-ax-4-mission-iss
(Credit: SpaceX)

SpaceX launched the Falcon 9 rocket kickstarting Axiom Space’s Ax-4 mission to the International Space Station (ISS). Axiom’s Ax-4 mission is led by a historic international crew and lifted off from Kennedy Space Center’s Launch Complex 39A at 2:31 a.m. ET on June 25, 2025.

The Ax-4 crew is set to dock with the ISS around 7 a.m. ET on Thursday, June 26, 2025. Axiom Space, a Houston-based commercial space company, coordinated the mission with SpaceX for transportation and NASA for ISS access, with support from the European Space Agency and the astronauts’ governments.

The Ax-4 mission marks a milestone in global space collaboration. The Ax-4 crew, commanded by U.S. astronaut Peggy Whitson, includes Shubhanshu Shukla from India as the pilot, alongside mission specialists Sławosz Uznański-Wiśniewski from Poland and Tibor Kapu from Hungary.

“The trip marks the return to human spaceflight for those countries — their first government-sponsored flights in more than 40 years,” Axiom noted.

Advertisement

Shukla’s participation aligns with India’s Gaganyaan program planned for 2027. He is the first Indian astronaut to visit the ISS since Rakesh Sharma in 1984.

Axiom’s Ax-4 mission marks SpaceX’s 18th human spaceflight. The mission employs a Crew Dragon capsule atop a Falcon 9 rocket, designed with a launch escape system and “two-fault tolerant” for enhanced safety. The Axiom mission faced a few delays due to weather, a Falcon 9 leak, and an ISS Zvezda module leak investigation by NASA and Roscosmos before the recent successful launch.

As the crew prepares to execute its scientific objectives, SpaceX’s Ax-4 mission paves the way for a new era of inclusive space research, inspiring future generations and solidifying collaborative ties in the cosmos. During the Ax-4 crew’s 14-day stay in the ISS, the astronauts will conduct nearly 60 experiments.

“We’ll be conducting research that spans biology, material, and physical sciences as well as technology demonstrations,” said Whitson. “We’ll also be engaging with students around the world, sharing our experience and inspiring the next generation of explorers.”

SpaceX’s Ax-4 mission highlights Axiom’s role in advancing commercial spaceflight and fostering international partnerships. The mission strengthens global space exploration efforts by enabling historic spaceflight returns for India, Poland, and Hungary.

Advertisement
Continue Reading

Trending