Connect with us

News

SpaceX blows up Starship tank to test new metal alloy

Another Starship test tank bites the dust - for science. (LabPadre)

Published

on

SpaceX has destroyed the third Starship ‘test tank’ prototype since it began building and testing the stout steel structures earlier this year.

Much like the third test tank SpaceX built was fashioned out of in-work hardware originally destined to become the full-scale Starship SN2 prototype, the latest tank was built with parts that may have initially been meant for Starship SN7. While SN7’s purpose – stress-testing new designs and manufacturing techniques – was largely identical to its predecessors, the test tank was by far the most radical departure from past hardware yet. The reason: SN7 was built entirely out of a different stainless steel alloy.

Deemed 304L, the type of steel is still readily available off the shelf and only 10-20% more expensive than the 301 alloy SpaceX has used to build all Starship prototypes up to SN7. The biggest change it brings to the table is improved ductility (malleability), particularly at the cryogenic temperatures Starship’s tanks will often be held at. By reducing brittleness, Starships built out of 304L steel should be able to fail far more gracefully by developing stable leaks instead of violently decompressing. In fact, the very same test tank destroyed on June 23rd demonstrated that capability perfectly when it sprung a leak during its first pressure test on June 15th.

During its first cryogenic pressure test with liquid nitrogen, SpaceX CEO Elon Musk revealed that the SN7 test tank managed to reach 7.6 bar (~110 psi) before it began to leak – technically satisfactory for orbital Starship launches with an industry-standard 25% safety factor. Thanks to the general flexibility of steel, including the new 304L alloy SN7 was built with, SpaceX was able to simply repair the leak it identified, readying the test tank for a second cryogenic pressure test barely a week later.

The remains of Starship test tank SN7 after a June 23rd pressure test. (NASASpaceflight – bocachicagal)

The tank’s second test was all but identical to the first up to the end, where its lower dome appeared to more or less unzip from the steel ring it was welded to. It remains to be seen if SN7 was able to beat its previous record during the second test but the failure mode was quite a bit different from any previous test tank, meaning that SpaceX has gathered useful new data regardless. If the 304L steel tank matched or beat a 301 tank’s current record of ~8.5 bar (~125 psi), SpaceX will very likely build all future Starship tanks out of the material.

According to Musk, another 304L test tank is already in the works and should be able to take SN7’s place very shortly. At the same time, SpaceX appears to finally be ready to roll the next full-scale Starship prototype (SN5) to the launch pad as early as June 24th to kick off cryogenic proof testing, Raptor static fires, and (hopefully) flight tests.

Advertisement

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

News

Elon Musk: Tesla autonomous driving might spread faster than any tech

The CEO noted that “hardware foundations have been laid for such a long time.”

Published

on

Credit: Tesla

Elon Musk has shared one of his most optimistic forecasts for Tesla’s self-driving rollout yet. As per the CEO, Tesla’s self-driving system could see the fastest technological adoption in history, thanks to the fleet’s capability to gain autonomous capabilities through a software update.

The CEO shared his forecast in a post on social media platform X.

Tesla’s aims to scale autonomy

Musk’s comment came as a response to industry watcher Sawyer Merritt, who posted a comparison between the geofence of Tesla’s Robotaxi network and Waymo’s service area. As can be seen in the graphic, Tesla’s Austin geofence has gotten noticeably larger compared to Waymo’s service area. 

In his response, Musk stated that “Tesla autonomous driving might spread faster than any technology ever.” He also stated that “hardware foundations have been laid for such a long time,” as a software update could unlock full autonomy “for millions of pre-existing cars in a short period of time.”

Musk’s comment bodes well for Tesla’s Robotaxi ambitions, which seem to be finally in reach with the deployment of Unsupervised FSD in vehicle factories, as well as Austin and the Bay Area. For now, however, Tesla’s Austin Robotaxis and Bay Area ride-hailing vehicles are still operated with a safety monitor in the driver’s seat. 

Advertisement

Tesla’s latest Austin expansion

Tesla recently expanded its Austin Robotaxi service area this week to 243 square miles, its largest yet and nearly triple the coverage from two months ago. The move outpaces Waymo’s local service footprint, which remains at around 90 square miles.

The expansion marks Tesla’s second major Austin update since August and emphasizes its push to dominate the autonomous ride-hailing landscape. With both Tesla and Waymo racing to prove scale and reliability, Musk’s confidence suggests the real contest may be about who can move fastest once the tech flips on across Tesla’s fleet. Once that happens, Tesla would effectively be able to win the self-driving race. 

Continue Reading

News

Tesla sends clear message to Waymo with latest Austin Robotaxi move

It is the first expansion Tesla has made in Austin since the one on August 26. The company still operates in the Bay Area of California as well, referring to that program specifically as a “ride-hailing service.”

Published

on

Credit: Tesla

Tesla has sent a clear message to Waymo with its latest move to its Robotaxi program in Austin, Texas.

Tesla and Waymo are the two true leaders in autonomous ride-hailing to an extent. Tesla has what many believe is a lot of potential due to its prowess with the Supervised Full Self-Driving suite. It is also operating a driverless Robotaxi service in Austin with a “Safety Monitor” that sits in the passenger’s seat.

Tesla explains why Robotaxis now have safety monitors in the driver’s seat

The two companies have been competing heavily in the market since they both launched driverless ride-hailing services in Austin this year: Waymo’s in March and Tesla’s in June.

One of the main drivers in the competition between the two is service area size, or the geofence in which the cars will operate without a driver. In August, the two were tied with a service area of about 90 square miles (233.099 sq. km).

Tesla then expanded to about 170 square miles (440.298 sq. km) on August 26, dwarfing Waymo’s service area and expanding to freeways. Tesla’s freeway operation of the Robotaxi suite requires the Safety Monitor to be in the driver’s seat for safety reasons.

On Tuesday evening, Tesla made another move that sent a clear message to Waymo, as it expanded once again, this time to 243 square miles (629.367 sq. km).

This is according to Robotracker:

It is the first expansion Tesla has made in Austin since the one on August 26. The company still operates in the Bay Area of California as well, referring to that program specifically as a “ride-hailing service.”

Yesterday, it expanded that service to the San Jose Mineta International Airport, something it has been working on for several months.

Waymo has its own set of distinct advantages over Tesla as well, as it operates in more cities and states than the EV maker. Waymo currently has its autonomous vehicle services in Phoenix, Arizona, San Francisco, Los Angeles, Austin, and Atlanta, Georgia.

Tesla plans to have half of the U.S. population with access to the Robotaxi platform by the end of the year.

Continue Reading

News

Tesla exec reveals shock development with Cybercab

“If we have to have a steering wheel, it can have a steering wheel and pedals.”

Published

on

(Credit: Teslarati)

Tesla is planning to launch the Cybercab in the second quarter of next year, and it is designed to be fully autonomous, so much so that the company is planning to build it without a steering wheel or pedals.

However, a Tesla executive said today that the company could ditch that idea altogether in what would be a major shift from the plans the company, and especially its CEO Elon Musk, have announced for the Cybercab.

Earlier today, Robyn Denholm, the company’s Chair for the Board of Directors, revealed that Tesla would potentially switch up its plans for the Cybercab based on potential regulatory requirements.

Credit: Tesla Europe & Middle East | X

Currently, even autonomous vehicles that operate for companies like Tesla and Waymo are required to have steering wheels and pedals. From a regulatory perspective, this could halt the plans Tesla has for Cybercab.

Denholm said in an interview with Bloomberg:

“If we have to have a steering wheel, it can have a steering wheel and pedals.”

Interestingly, Musk and Tesla have not veered away from the idea that the vehicle will be without these operational must-haves.

Since the vehicle was revealed last October at the We, Robot event in Los Angeles, Tesla has maintained that the car would be built without a steering wheel or pedals, and would equip two seats, which is what is statistically most popular in ride-sharing, as the vast majority of rides have only one or two passengers.

Musk doubled down on the plans for Cybercab as recently as last week, when he said:

“That’s really a vehicle that’s optimized for full autonomy. It, in fact, does not have a steering wheel or pedals and is really an enduring optimization on minimizing cost per mile for fully considered cost per mile of operation. For our other vehicles, they still have a little bit of the horse carriage thing going on where, obviously, if you’ve got steering wheels and pedals and you’re designing a car that people might want to go very direct past acceleration and tight cornering, like high-performance cars, then you’re going to design a different car than one that is optimized for a comfortable ride and doesn’t expect to go past sort of 85 or 90 miles an hour.”

Cybercab is fully conceptualized as a vehicle that has zero need for pedals or a steering wheel because it is aimed toward being fully reliant on a Level 5 autonomous platform.

Tesla is ramping its hiring for Cybercab vehicle manufacturing roles

Regulators could get in the way of this, however, and although the car could drive itself and be a great solution for ride-hailing, it might need to have these controls to hit the road in the future.

Continue Reading

Trending