Connect with us

SpaceX

SpaceX’s steel Starship gets new official render, this time with a huge NASA telescope

SpaceX's Starship pictured with the proposed LUVOIR B telescope in its payload bay, LUVOIR A in the background. (SpaceX/NASA/Teslarati)

Published

on

SpaceX recently provided NASA with the third known official render of its stainless steel Starship, focused on the vehicle’s potential utility for launching massive scientific spacecraft for NASA. Starship’s only direct competition for the proposed LUVOIR telescope: NASA’s own SLS rocket.

Published by NASA’s Goddard Space Flight Center (GSFC), Starship is shown with a smaller “B” variant of the proposed LUVOIR space telescope in its payload bay. According to a scientist from the Space Telescope Science Institute (STSI), the massive LUVOIR-A variant could “barely” fit inside Starship’s clamshell bay, but the telescope could also be tweaked to more perfectly fit the constraints of its chosen launch vehicle. LUVOIR is effectively being designed as a logical follow-up to the James Webb Space Telescope (JWST) and could be ready to launch no earlier than 2039 if NASA selects the idea – one of three under consideration – for future development.

The LUVOIR telescope (shorthand for Large UV/Optical/IR Surveyor) is currently grouped into two different categories, A and B. A is a full-scale, uncompromised telescope with a vast 15-meter primary mirror and a sunshade with an area anywhere from 5000 to 20000 square meters (1-4 acres). B is a smaller take on the broadband surveyor telescope, with an 8-meter primary mirror (a quarter of the area of LUVOIR-A’s) accompanied by a similarly reduced sunshade (and price tag, presumably).

— Teslarati, July 2018

Goddard’s “we asked, SpaceX checked” statement refers to a funded analysis of LUVOIR launch options the group announced back in July 2018, at which point the future prospects of NASA’s SLS rocket were far more stable. Approximately nine months later, NASA administrator Jim Bridenstine announced that all work on future SLS upgrades – including the Block 1B and Block 2 variants that could have supported the launch of LUVOIR-A – was to be halted as soon as possible. All of that funding would instead be focused on mitigating a never-ending string of delays and pushing SLS to actually prepare for its first launches. Bridenstine has since publicly waffled on that aggressive plan, simultaneously indicating that some of those SLS upgrades (mainly an advanced upper stage, EUS) would be critical for one variant of his proposal to return astronauts to the Moon as early as 2024.

Regardless, the blood of SLS is currently in the water as NASA pursues an answer to the question of whether commercial rockets can instead be used to launch the agency’s Orion spacecraft and Lunar Gateway segments. Based on preliminary interviews focused on NASA’s internal study of the subject, there is still plenty of room for SLS as long as its contractors (namely Boeing) can stem relentless delays, cost overruns, and quality control issues and finally prepare the rocket for its first missions.

As described above, it appears likely that NASA is going to require the SLS rocket’s core stage to conduct a critical mission-duration test fire before permitting the vehicle to begin launch preparations in Florida. As a result, there will be almost no conceivable way for the rocket to rise to the 2020 launch debut challenge issued by Bridenstine, potentially meaning that NASA will put significant resources into studying and developing alternatives to SLS. If or when NASA sets the precedent for allowing serious studies and funding of SLS alternatives, the death of the rocket will almost certainly be assured. Relative to commercial rockets like Falcon Heavy, New Glenn, Vulcan Heavy, and even SpaceX’s BFR (i.e. Starship/Super Heavy), conservative estimates suggest that SLS will be no less than 5-20+ times as expensive on a per-launch basis.

Consequently, it should come as no surprise to see NASA Goddard openly confirm its willingness to launch future flagship science missions on SpaceX’s Starship vehicle, so long as the rocket is successfully developed, launched, and certified by NASA for high-value missions. Given just how distant the proposed ~2039 launch of LUVOIR is and how early SpaceX is in the process of developing Starship/Super Heavy into a highly mature and reliable launch vehicle, one should not read too far into Goddard’s public support.

https://twitter.com/starkspace/status/1116336743584759810

However, there should be no doubt at this point that SpaceX’s next-generation Starship and current-generation Falcon Heavy rockets are already upsetting certain aspects of the status quo. If SpaceX continues to refine Starship’s design and demonstrate Falcon Heavy’s reliability and readiness, studies like Goddard’s LUVOIR launch case can be expected to crop up throughout domestic and global space industries, both pubic and private.

Advertisement

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

SpaceX produces its 10 millionth Starlink kit

The first 5 million Starlink kits took nearly four years to build.

Published

on

Credit: Starlink/X

SpaceX has achieved a major milestone, producing its 10 millionth Starlink kit. The accomplishment was celebrated across the company’s Hawthorne, California, and Bastrop, Texas, facilities. 

The milestone was shared in social media by Sujay Soman, Senior Facilities Engineer, in a LinkedIn post, which has since been deleted. 

Starlink Production Ramp

Soman noted in his LinkedIn post that the first 5 million Starlink kits took nearly four years to build, but the next 5 million kits were completed in just 11 months. This underscores SpaceX’s intense efforts to ramp up the satellite internet system’s production, and it reflects the private space company’s manufacturing prowess.

The SpaceX Senior Facilities Engineer shared a couple of photos of the Machine Maintenance and Facilities team in Bastrop to commemorate the event.

“Today, Starlink Product teams across our Hawthorne and Bastrop sites produced the 10th Million Starlink Kit! It took almost 4 years to build our first 5 million kits, and we doubled that in about 11 months. Monumental accomplishment!” Soman wrote in his post.

Advertisement
Credit: Sujay Soman/LinkedIn

World-Changing Technology 

The Starlink kits, featuring dish hardware and supporting equipment, enable users to connect to the company’s growing constellation of low Earth orbit satellites. With over 6,000 satellites launched to date, Starlink now provides fast and reliable internet connectivity to over 6 million customers worldwide. This was a significant increase from the 5 million customers that the company reported in February 2025.

SpaceX has not detailed its next production targets, but the production of Starlink’s 10 millionth kit milestone signals the company’s readiness to scale further. Being an Elon Musk-led company, SpaceX is arguably the best in the business when it comes to efficient and cost-effective manufacturing. It would then be unsurprising if SpaceX announces another Starlink production milestone soon.

Continue Reading

News

Starlink India launch gains traction with telecom license approval  

Starlink just secured its telecom license in India! High-speed satellite internet could go live in 2 months.

Published

on

starlink-spain-portugal-blackout
(Credit: Starlink)

 

Starlink India’s launch cleared a key regulatory hurdle after securing a long-awaited license from the country’s telecom ministry. Starlink’s license approval in India paves the way for commercial operations to begin, marking a significant milestone after a three-year wait.

The Department of Telecommunications granted Starlink a Global Mobile Personal Communication by Satellite (GMPCS) license, enabling it to roll out its high-speed internet service. Local reports hinted that Starlink plans to launch its services within the next two months. Starlink India’s services are expected to be priced at ₹3,000 per month for unlimited data. Starlink service would require a ₹33,000 hardware kit, including a dish and router.

“Starlink is finally ready to enter the Indian market,” sources familiar with the rollout plans confirmed, noting a one-month free trial for new users.

https://www.teslarati.com/starlink-india-launch-spectrum-rules/

Starlink’s low-Earth orbit satellite network promises low-latency, high-speed internet that is ideal for rural India, border areas, and hilly terrains. With over 7,000 satellites in orbit and millions of global users, Starlink aims to bridge India’s digital divide, especially in areas with limited traditional broadband.

Advertisement

Starlink has forged distribution partnerships with Indian telecom giants Reliance Jio and Bharti Airtel to streamline deployment and retail logistics. However, the company still awaits spectrum allocation and final clearances from India’s space regulator, IN-SPACe, and national security agencies before its full launch, expected before August 2025.

India’s satellite internet market is becoming increasingly competitive, with Starlink joining rivals like OneWeb and Jio Satellite Communications. While Starlink positions itself as a premium offering, its entry has sparked debate among domestic telecom operators over spectrum pricing.

Local reports noted that other players in the industry have raised concerns over the lower regulatory fees proposed for satellite firms compared to terrestrial operators, highlighting tensions in the sector.

Starlink India’s launch represents a transformative step toward expanding internet access in one of the world’s largest markets. Starlink could redefine connectivity for millions in underserved regions by leveraging its advanced satellite technology and strategic partnerships. As the company navigates remaining regulatory steps, its timely rollout could set a new standard for satellite internet in India, intensifying competition and driving innovation in the telecom landscape.

Advertisement
Continue Reading

News

SpaceX to debut new Dragon capsule in Axiom Space launch

Ax-4’s launch marks the debut of SpaceX’s latest Crew Dragon and pushes Axiom closer to building its own space station.

Published

on

spacex-dragon-axiom-ax-4-mission-iss
(Credit: SpaceX)

Axiom Space’s Ax-4 mission targets the International Space Station (ISS) with a new SpaceX Crew Dragon capsule.

The Axiom team will launch a new SpaceX Dragon capsule atop a Falcon 9 rocket from NASA’s Kennedy Space Center in Florida on Wednesday at 8:00 a.m. EDT (1200 GMT). The Ax-4 mission launch was initially set for Tuesday, June 10, but was delayed by one day due to expected high winds.

As Axiom Space’s fourth crewed mission to the ISS, Ax-4 marks the debut of an updated SpaceX Crew Dragon capsule. “This is the first flight for this Dragon capsule, and it’s carrying an international crew—a perfect debut. We’ve upgraded storage, propulsion components, and the seat lash design for improved reliability and reuse,” said William Gerstenmaier, SpaceX’s vice president of build and flight reliability.

Axiom Space is a Houston-based private space infrastructure company. It has been launching private astronauts to the ISS for research and training since 2022, building expertise for its future station. With NASA planning to decommission the ISS by 2030, Axiom has laid the groundwork for the Axiom Station, the world’s first commercial space station. The company has already begun construction on its ISS replacement.

Advertisement

The Ax-4 mission’s research, spanning biological, life, and material sciences and Earth observation, will support this ambitious goal. Contributions from 31 countries underscore the mission’s global scope. The four-person crew will launch from Launch Complex 39A, embarking on a 14-day mission to conduct approximately 60 scientific studies.

“The AX-4 crew represents the very best of international collaboration, dedication, and human potential. Over the past 10 months, these astronauts have trained with focus and determination, each of them exceeding the required thresholds to ensure mission safety, scientific rigor, and operational excellence,” said Allen Flynt, Axiom Space’s chief of mission services.

The Ax-4 mission highlights Axiom’s commitment to advancing commercial space exploration. By leveraging SpaceX’s Dragon capsule and conducting diverse scientific experiments, Axiom is paving the way for its Axiom Station. This mission not only strengthens international collaborations but also positions Axiom as a leader in the evolving landscape of private space infrastructure.

Continue Reading

Trending