Connect with us

News

SpaceX installs Starship booster on orbital launch mount for the third time

Super Heavy Booster 4's third trip onto the orbital launch mount. (Starship Gazer)

Published

on

After several signs of imminent activity on Sunday, SpaceX has installed Super Heavy Booster 4 (B4) on Starbase’s lone ‘orbital launch mount’ for the third time.

Around 10am CST (UTC-6), SpaceX began retracting more than a dozen clamps that hold the 69m (~225 ft) tall Super Heavy – the largest booster ever built – to its transport and work stand. By 11:30am, Booster 4 was safely extracted from the stand and hovering above it as the lift team crossed their Ts and dotted their Is before proceeding. SpaceX’s newest Starbase crane then spun around and crawled a short distance to the orbital launch mount, where it lifted Booster 4 above the mount.

In a process that this particular Super Heavy prototype is thoroughly familiar with, SpaceX then very carefully lowered B4 down into the center of the donut-shaped orbital launch mount, where 20 separate clamps – each capable of deploying and retracting – form a support ring and giant hold-down clamp.

It’s unclear how exactly that process of mount installation works but it could be quite the orchestration. By all appearances, Super Heavy hold-down clamps – mechanical devices designed to hold the booster to its work stand or keep it immobile on the launch mount during a variety of test – work by reaching inside the lip of the booster’s aft ‘skirt,’ which sports a very sturdy ring of steel that 20 Raptor Boost engines mount to and push against. The 20 clamps fit precisely between each of those 20 outer Raptors and grab onto Super Heavy from the inside.

Just before liftoff, all 20 hold-down clamps will rapidly retract back into the orbital launch mount. So will another 20 small quick-disconnect umbilical panels designed to supply every single Raptor Boost engine with the gases they need to ignite. The primary booster quick-disconnect – which connects Super Heavy to power, communications, and propellant supplies – will also retract into a hooded enclosure at some point during the process. Finally, a giant, swinging arm located about halfway up Starbase’s ‘launch tower’ will retract a similar quick-disconnect panel for Starship fueling, retract two claw-like support arms, and swing back for liftoff.

Advertisement
-->

Altogether, while there are likely even more than just those described above, a single Starship launch will require at least 44 separate devices to successful actuate in rapid and precise succession – 41 for Super Heavy and at least 3 for Starship. That incredible complexity – probably making Starship’s the most mechanically complex launch mount in the history of rocketry – may partially explain why Super Heavy Booster 4 has yet to even attempt a single proof test more than four months after it first left the high bay it was built in.

Some of the launch mount’s incredible complexity is visible here.

Without a functioning orbital launch mount, it hasn’t been possible to fully test a Super Heavy booster. With any luck, on their third rendezvous, both Booster 4 and the orbital launch mount are finally close enough to completion to perform some serious testing. At the absolute minimum, everything appears to be in order for SpaceX to properly connect Super Heavy to the launch mount and pad for the first time – the process of which is already underway. Aside from connecting B4 to the mount’s hold-down clamps, which has been done twice before, SpaceX can now attach all 20 Raptor quick-disconnects and the main booster quick-disconnect to a Super Heavy for the first time. Further up the tower, SpaceX can also partially test out the Starship quick-disconnect arm, which is half-designed to grab onto and stabilize Super Heavy.

SpaceX currently has road closures (signifying plans for ship, booster, or pad testing) scheduled on Tuesday through Friday this week, hinting at the possibility that Super Heavy B4 could finally start proof testing in mid-December.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

Tesla Model 3 named New Zealand’s best passenger car of 2025

Tesla flipped the switch on Full Self-Driving (Supervised) in September, turning every Model 3 and Model Y into New Zealand’s most advanced production car overnight.

Published

on

Credit: Tesla Asia/X

The refreshed Tesla Model 3 has won the DRIVEN Car Guide AA Insurance NZ Car of the Year 2025 award in the Passenger Car category, beating all traditional and electric rivals. 

Judges praised the all-electric sedan’s driving dynamics, value-packed EV tech, and the game-changing addition of Full Self-Driving (Supervised) that went live in New Zealand this September.

Why the Model 3 clinched the crown

DRIVEN admitted they were late to the “Highland” party because the updated sedan arrived in New Zealand as a 2024 model, just before the new Model Y stole the headlines. Yet two things forced a re-evaluation this year.

First, experiencing the new Model Y reminded testers how many big upgrades originated in the Model 3, such as the smoother ride, quieter cabin, ventilated seats, rear touchscreen, and stalk-less minimalist interior. Second, and far more importantly, Tesla flipped the switch on Full Self-Driving (Supervised) in September, turning every Model 3 and Model Y into New Zealand’s most advanced production car overnight.

FSD changes everything for Kiwi buyers

The publication called the entry-level rear-wheel-drive version “good to drive and represents a lot of EV technology for the money,” but highlighted that FSD elevates it into another league. “Make no mistake, despite the ‘Supervised’ bit in the name that requires you to remain ready to take control, it’s autonomous and very capable in some surprisingly tricky scenarios,” the review stated.

Advertisement
-->

At NZ$11,400, FSD is far from cheap, but Tesla also offers FSD (Supervised) on a $159 monthly subscription, making the tech accessible without the full upfront investment. That’s a game-changer, as it allows users to access the company’s most advanced system without forking over a huge amount of money.

Continue Reading

News

Tesla starts rolling out FSD V14.2.1 to AI4 vehicles including Cybertruck

FSD V14.2.1 was released just about a week after the initial FSD V14.2 update was rolled out.

Published

on

Credit: Grok Imagine

It appears that the Tesla AI team burned the midnight oil, allowing them to release FSD V14.2.1 on Thanksgiving. The update has been reported by Tesla owners with AI4 vehicles, as well as Cybertruck owners. 

For the Tesla AI team, at least, it appears that work really does not stop.

FSD V14.2.1

Initial posts about FSD V14.2.1 were shared by Tesla owners on social media platform X. As per the Tesla owners, V14.2.1 appears to be a point update that’s designed to polish the features and capacities that have been available in FSD V14. A look at the release notes for FSD V14.2.1, however, shows that an extra line has been added. 

“Camera visibility can lead to increased attention monitoring sensitivity.”

Whether this could lead to more drivers being alerted to pay attention to the roads more remains to be seen. This would likely become evident as soon as the first batch of videos from Tesla owners who received V14.21 start sharing their first drive impressions of the update. Despite the update being released on Thanksgiving, it would not be surprising if first impressions videos of FSD V14.2.1 are shared today, just the same.

Advertisement
-->

Rapid FSD releases

What is rather interesting and impressive is the fact that FSD V14.2.1 was released just about a week after the initial FSD V14.2 update was rolled out. This bodes well for Tesla’s FSD users, especially since CEO Elon Musk has stated in the past that the V14.2 series will be for “widespread use.” 

FSD V14 has so far received numerous positive reviews from Tesla owners, with numerous drivers noting that the system now drives better than most human drivers because it is cautious, confident, and considerate at the same time. The only question now, really, is if the V14.2 series does make it to the company’s wide FSD fleet, which is still populated by numerous HW3 vehicles. 

Continue Reading

News

Waymo rider data hints that Tesla’s Cybercab strategy might be the smartest, after all

These observations all but validate Tesla’s controversial two-seat Cybercab strategy, which has caught a lot of criticism since it was unveiled last year.

Published

on

Credit: wudapig/Reddit

Toyota Connected Europe designer Karim Dia Toubajie has highlighted a particular trend that became evident in Waymo’s Q3 2025 occupancy stats. As it turned out, 90% of the trips taken by the driverless taxis carried two or fewer passengers. 

These observations all but validate Tesla’s controversial two-seat Cybercab strategy, which has caught a lot of criticism since it was unveiled last year.

Toyota designer observes a trend

Karim Dia Toubajie, Lead Product Designer (Sustainable Mobility) at Toyota Connected Europe, analyzed Waymo’s latest California Public Utilities Commission filings and posted the results on LinkedIn this week.

“90% of robotaxi trips have 2 or less passengers, so why are we using 5-seater vehicles?” Toubajie asked. He continued: “90% of trips have 2 or less people, 75% of trips have 1 or less people.” He accompanied his comments with a graphic showing Waymo’s occupancy rates, which showed 71% of trips having one passenger, 15% of trips having two passengers, 6% of trips having three passengers, 5% of trips having zero passengers, and only 3% of trips having four passengers.

The data excludes operational trips like depot runs or charging, though Toubajie pointed out that most of the time, Waymo’s massive self-driving taxis are really just transporting 1 or 2 people, at times even no passengers at all. “This means that most of the time, the vehicle being used significantly outweighs the needs of the trip,” the Toyota designer wrote in his post.

Advertisement
-->

Cybercab suddenly looks perfectly sized

Toubajie gave a nod to Tesla’s approach. “The Tesla Cybercab announced in 2024, is a 2-seater robotaxi with a 50kWh battery but I still believe this is on the larger side of what’s required for most trips,” he wrote.

With Waymo’s own numbers now proving 90% of demand fits two seats or fewer, the wheel-less, lidar-free Cybercab now looks like the smartest play in the room. The Cybercab is designed to be easy to produce, with CEO Elon Musk commenting that its product line would resemble a consumer electronics factory more than an automotive plant. This means that the Cybercab could saturate the roads quickly once it is deployed.

While the Cybercab will likely take the lion’s share of Tesla’s ride-hailing passengers, the Model 3 sedan and Model Y crossover would be perfect for the remaining  9% of riders who require larger vehicles. This should be easy to implement for Tesla, as the Model Y and Model 3 are both mass-market vehicles. 

Continue Reading