Connect with us

SpaceX

SpaceX fully installs Super Heavy booster’s ‘aerocovers’

Published

on

For the first time, SpaceX has more or less installed a full set of ‘aerocovers’ on a Super Heavy booster prototype.

Designed to protect the booster from both itself and Earth’s atmosphere during ground testing, liftoff, ascent, and reentry, Super Heavy’s the structures amount to thin, steel shells mounted on metal box frames. The most obvious aerocovers slot over the top of six racks of equipment installed on the outside of Super Heavy’s aft end, giving the booster a sort of utility belt of hydraulic systems, pressure vessels, avionics, and heat exchangers. Unsurprisingly, those racks are festooned with electronics, composites, and thousands of feet of wiring and thin plumbing – none of which are particularly suited to sit a few dozen feet from the fury of 29-33 Raptor engines or near the leading edge of a hypersonic reentry vehicle.

Aside from the steel they’re mounted on, it’s likely that every system located on Super Heavy’s ‘utility built’ would begin malfunctioning or be destroyed outright if directly exposed to just a few seconds of the hypersonic buffeting and heating Starship boosters will experience during reentry. Unlike Falcon boosters, which almost always use reentry burns to slow down and create a sort of heat shield with their own exhaust, SpaceX is theoretically designing Super Heavy to survive the full force of reentry without an extra burn to cushion the blow.

To survive reentry and still land in good enough condition to enable anything close to same-day reusability, which is SpaceX’s goal, every ounce of at-risk equipment installed on Super Heavy’s exterior will likely need to be carefully shielded. In theory, that’s the purpose of the aerocovers SpaceX has only just begun to fully install – let alone test – on Super Heavy B4.

December 11th, 2021.
January 14th, 2022.

Before Booster 4’s most recent installation on the orbital launch mount, SpaceX did install covers over a pair of hydraulic and heat exchanger racks but left all four composite overwrapped pressure vessel (COPV) racks and an umbilical port uncovered. After B4 was removed from the launch mount for the third time on December 30th, both covers were uninstalled. On January 14th, 2022, though, SpaceX rapidly installed all six covers for the first time and began sealing each cover’s exposed corners. On January 17th, SpaceX even installed aerodynamic surfaces around Booster 4’s protruding umbilical port, smoothing out any hypothetical airflow around the device.

Prior to main aerocover installation, SpaceX also added at least half a dozen small boxes seemingly designed to protect a number of thin metal probes that pierce through Super Heavy’s tanks and skin and are connected to avionics boxes. Additionally, while less visible, teams also worked to finish Super Heavy B4’s Raptor heat shielding with a large number of similar sheet steel covers and panels. Without official photos from SpaceX or another lift onto the launch mount, it’s impossible to know if Booster 4’s Raptor heat shield is fully closed out, but the shielding that runs around its circumference appears to be finished.

Advertisement
Super Heavy B4’s Raptor heat shielding is partially visible in these views. (SpaceX)

As it stands, Super Heavy B4 is likely just a few parts shy of true completion and is about as ready as it’ll ever be for static fire testing. More likely than not, those aerocovers and Raptor heat shields are essential for Super Heavy B4 to be able to perform more than one test at a time without immediately requiring major repairs. Unlike Starship, which has mostly tested three engines at once and only performed a few six-engine static fires, Super Heavy B4 may eventually test all 29 Raptor engines simultaneously.

When almost 30 engines are involved, even nominal preburner testing will likely produce a massive fireball that could engulf Super Heavy’s aft (if not the entire booster) with flames. For static fire testing, Raptors typically produce a smaller and briefer (but still substantial) fireball during shutdown, creating another potential source of damage to any sensitive hardware located anywhere on or in Booster 4’s thrust section. As such, Super Heavy aerocovers may be just as important for surviving static fires as they’ll be for surviving launches and landings.

It’s unclear if or when Super Heavy B4 will return to the orbital launch mount for wet dress rehearsal and static fire testing. SpaceX has ambiguous test windows scheduled from 10am to 10pm on January 18th, 19th, and 20th.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

News

SpaceX reaches incredible Starlink milestone

Published

on

Credit: SpaceX

SpaceX has reached an incredible milestone with its Starlink program, officially surpassing 10,000 satellites launched into low Earth orbit since starting the program back in 2019.

Last Sunday, October 19, SpaceX launched its 131st and 132nd Falcon 9 missions of 2025, one from Cape Canaveral, Florida, and the other from Vandenberg, California.

The 10,000th Starlink satellite was aboard the launch from California, which was Starlink 11-19, and held 28 v2 mini optimized satellites.

The achievement was marked by a satellite tracker developed by Jonathan McDowell.

The first Starlink launch was all the way back on May 23, 2019, as SpaceX launched its first 60 satellites from Cape Canaveral using a Falcon 9 rocket.

Of the over 10,000 satellites in orbit, the tracker says 8,608 are operational, as some are intentionally de-orbited after becoming faulty and destroyed in the atmosphere.

SpaceX has truly done some really incredible things during its development of the Starlink program, including launch coverage in a global setting, bringing along millions of active subscribers that use the service for personal and business use, locking up commercial partnerships, and more.

Starlink currently operates in around 150 countries, territories, and markets and is available at least somewhere on all seven continents.

Additionally, Starlink has over 5 million subscribers worldwide, and 2.7 million have joined the program over the past year. It has revolutionized internet access on commercial aircraft as well, as several high-profile airlines like Qatar and United, among many others, have already installed Starlink on some of their planes to deliver more stable connectivity for passengers and crew.

SpaceX has the approval to launch 12,000 Starlink satellites from the FAA, but it plans to bring over 30,000 to its constellation, giving anyone the ability to have access to high-speed internet.

Continue Reading

Elon Musk

SpaceX posts Starship booster feat that’s so nutty, it doesn’t even look real

The Super Heavy booster’s feat was so impressive that the whole maneuver almost looked like it was AI-generated.

Published

on

Credit: SpaceX/X

SpaceX has shared a video of a remarkable feat achieved by Starship’s Super Heavy booster during its 11th flight test.

The Super Heavy booster’s feat was so impressive that the whole maneuver, which was captured on video, almost looked like it was AI-generated.

Super Heavy’s picture perfect hover

As could be seen in the video shared by SpaceX, Starship’s Super Heavy booster, which is nearly 400 feet tall, smoothly returned to Earth and hovered above the Gulf of America for a few seconds before it went for its soft water landing. The booster’s picture-perfect maneuver before splashing down all but capped a near-flawless mission for Starship, which is about to enter its V3 era with Flight 12.

The booster’s balance and stability were so perfect that some users on X joked that the whole thing looked AI-generated. Considering the size of Super Heavy, as well as the fact that the booster was returning from space, the hovering display all but showed that SpaceX is dead serious about keeping its dominant lead in the spaceflight sector.

Starship V2’s curtain call

As noted in a Space.com report, Flight Test 11 achieved every major goal SpaceX had set for the mission, including deploying Starlink mass simulators, relighting Raptor engines in space, and executing a stable reentry for both the Starship Upper Stage and the Super Heavy booster. The feat also marked the second time a Super Heavy booster has been reflown, a milestone in SpaceX’s quest to make the entire Starship system fully reusable.

Advertisement

Starship’s V2 vehicle will now give way to the upgraded Starship V3, which is designed for faster turnaround and higher payload capacity. The Starship program is expected to pursue even more aggressive targets in the coming months as well, with Elon Musk stating on social media platform X that SpaceX will attempt a tower catch for Starship Upper Stage as early as spring 2026.

Continue Reading

Elon Musk

Starship’s next chapter: SpaceX eyes tower catch after flawless Flight 11

Elon Musk has revealed the tentative timeframe for Starship’s next milestone that would push the spacecraft’s reusability to a whole new level. 

Published

on

Credit: SpaceX

Elon Musk has revealed the tentative timeframe for Starship’s next milestone that would push the spacecraft’s reusability to a whole new level. 

Following Flight 11’s flawless mission, Musk noted on X that SpaceX will be aiming to catch the Starship Upper Stage with its launch tower as early as spring 2026. This should pave the way for SpaceX to start optimizing Starship for maximum reusability.

Flight 11 closes the Starship V2 chapter on a high note

Starship’s eleventh flight, which launched from Starbase, Texas, achieved every major mission objective. The Super Heavy booster completed a successful ascent, hover, and soft splashdown in the Gulf of America, while the upper stage executed an orbit burn, deployed Starlink simulators, and returned with a controlled reentry over the Indian Ocean.

This mission officially closed the chapter on the second-generation Starship and first-generation Super Heavy booster, and it set the stage for a redesigned vehicle built for orbital payload missions, propellant transfer, and beyond. It should be noted that Elon Musk has mentioned on X that Starship V3, at least if things go well, might be capable of reaching Mars.

Elon Musk confirms tower catch attempt set for spring

After Flight 11’s success, Musk confirmed that SpaceX will attempt to catch the Starship Upper Stage with its launch tower arms, fondly dubbed by the spaceflight community as “chopsticks,” in the coming months. Musk’s announcement came as a response to an X user who asked when the tower could start catching the Starship Upper Stage. In his reply, Musk simply wrote “Springtime.” 

Advertisement

Starship’s reusability is a key feature of the spacecraft, with SpaceX aiming to achieve a launch cadence that is almost comparable to conventional aircraft. For such a scenario to be feasible, launch tower catches of both Starship’s Upper Stage and its Super Heavy booster have to be routine.

Continue Reading

Trending