Connect with us

News

SpaceX Starship website spotted ahead of Elon Musk’s June rocket update

An animation of 2017's iteration of Starship/Super Heavy, previously known as BFR. (SpaceX)

Published

on

It appears that SpaceX is preparing a dedicated website for its proposed Starship point-to-point transport system, potentially capable of transporting dozens of passengers anywhere on Earth in just 30-60 minutes.

Assuming this website is actually a prelude to a SpaceX reveal (it could be completely unrelated), it seems likely that Starship.com will go live sometime around CEO Elon Musk’s planned June 20th update on Starship and Super Heavy. Much like Starlink.com went live on the day of SpaceX’s first dedicated launch, the company may be ready to tease more substantial details and fleshed-out plans for its aspirational Starship airline.

Big Falcon Challenge

Regardless of the theoretical viability of SpaceX’s Earth-to-Earth transport aspirations or the company’s readiness to kick off the publicity for the service, the fact remains that maturing Starship/Super Heavy (formerly BFR) into a system with reliability approaching that of airliners will take at least 5-10 years, if not decades. The idea itself – using reusable rockets to transport customers anywhere on Earth in 30-60 minutes at a cost comparable to business class tickets – is undeniably alluring and theoretically achievable. However, the list of “iff” statements that must first be satisfied for is immense and full of an array of technological firsts, any one of which could be a showstopper.

The greatest challenge of affordable, reliable point-to-point transport relates directly to the need for affordability and reliability. Put simply, rockets are in many ways far more complex than modern airliners, requiring margins of design and error and that would make commercial aircraft engineers blush. Modern FAA regulations currently expect manufacturers and operators to design, build, and fly passenger aircraft such that the chances of catastrophic failure (generally a fatal crash and total hull loss) average one in one billion flight hours. That may sound downright unachievable, but modern airliners routinely reach levels of reliability measured in hundreds of millions of flight hours between loss-of-life failures.

The best records of rocket reliability are currently held by Ariane 5 and Atlas V, reaching success streaks without catastrophic failure of 86 launches and 81 launches, respectively. It’s difficult to compare airliners and rockets, as rockets feature multiple stages and are typically only active for 30-90 minutes. Under the generous and inaccurate assumption that the average Ariane 5 mission accounts for 90 minutes of “flight time”, the most statistically reliable launch vehicle ever built is roughly 1,000,000 to 10,000,000 times less safe than the FAA’s present-day certification requirements. It would be more accurate to compare the distance traveled per catastrophic failure, but that would still indicate that the proven safety record of launch vehicles is perhaps 20,000 to 200,000 times worse than that of modern passenger aircraft.

BFR’s 2017 variation is visualized during an Earth-to-Earth transport launch. (SpaceX)
BFR may have changed radically (and gained a new name) since its 2016 reveal, but SpaceX executives have continued to indicate that Earth-to-Earth transport remains a serious ambition for the company.

Extreme reusability: extreme reliability?

Additionally, most modern rockets are expended, although SpaceX is doing everything it can to flip that equation. The only conceivable way to sustain a real commercial market for suborbital, hypersonic passenger transportation – aside from guaranteeing that passengers are unlikely to die – is to implement a level of rapid reusability that is entirely unprecedented in spaceflight. As it turns out, regardless of any Earthbound spaceliner ambitions the company may have, SpaceX’s ultimate mission is to accomplish precisely that goal, albeit in order to colonize Mars in a practical timeframe.

What has never explicitly been a part of SpaceX’s goal, however, is achieving that level of extreme reusability simultaneously alongside airliner-class reliability. Accepting high levels of risk has always been front and center to Elon Musk’s presentations on SpaceX’s BFR-powered Mars ambitions, with the CEO often indicating that chances of death would be quite high on early missions to the Red Planet. Of course, surviving and building a colony on Mars is a fair bit riskier than anything specifically centered around Earth and suborbital flight regimes.

To make it to Mars, Starship will have to launch, refuel 3-10 times in Earth orbit, undergo a 3-6 month journey through deep space, put extreme stress on its heat shield during Mars aerobraking and reentry, and then land on another planet. For Earth-to-Earth missions, Starship would be subjected to comparatively gentle reentries of ~7.5 km/s, lower than orbital velocity. (SpaceX)

All of this is to say that SpaceX may or may not succeed in its ambition of developing a spacecraft/booster that is as extraordinarily reliable as it is reusable, just as SpaceX may or may not publish a website dedicated to Earth-to-Earth Starship transport sometime next month. Stay tuned to find out on the next episode!

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

News

Tesla might be doing away with a long-included feature with its vehicles

It appears Tesla is mulling the possibility of not including key cards with its vehicles any longer.

Published

on

Credit: Tesla

Tesla might be doing away with a long-included feature with its vehicles, as it could be looking to phase out something that very few owners utilize.

Tesla Key Cards are included when you purchase your vehicle, and they assist in the initial setup process. However, after that, they are not super useful or relevant to the owner, as many rely on their Phone Key through the Tesla App to access their cars.

As such, it appears Tesla is mulling the possibility of not including key cards with its vehicles any longer. According to some language that has been removed from vehicle Owner’s Manuals that talks about the inclusion of key cards with the car upon delivery:

“Tesla provides you with two Model 3/Y key cards, designed to fit in your wallet.”

That sentence was removed from Owner’s Manuals, according to Not a Tesla App, which first spotted the change.

Tesla Model 3 owner implants RFID key card chip into her arm as ultimate hack to unlock door

Interestingly, the timing of the phrase being removed from Owner’s Manuals comes just after Tesla launched its “affordable” Standard Models, and could be a small money-saving measure for the company.

Key Cards have been utilized by Tesla for its cars since 2017, as they became an included accessory with the vehicle. They still have their place and are useful for other applications, such as Valet service and even to be used by car owners if their phone is dead or if someone else needs to get into the car.

They can also be purchased in the Tesla Shop for $40.

It seems as if Tesla is planning to have owners be completely reliant on the Phone Key, which is more useful and convenient than carrying around the Key Cards.

Although it is minor, it is yet another strategy Tesla is using to trim any sort of costs that can be eliminated and could save money in the long run.

Continue Reading

News

Elon Musk confirms Tesla FSD V14.2 will see widespread rollout

Musk shared the news in a post on social media platform X.

Published

on

Credit: Whole Mars Catalog/X

Elon Musk has confirmed that Tesla will be implementing a wide rollout of Full Self-Driving (FSD) V14 with the system’s V14.2 update. Musk shared the news in a post on social media platform X. 

FSD V14.1.2 earns strong praise from testers

Musk’s comment came as a response to Tesla owner and longtime FSD tester AI DRIVR, who noted that it might be time to release Full Self-Driving to the fleet because V14.1.2 has already become very refined.

“95% of the indecisive lane changes and braking have been fixed in FSD 14.1.2. I haven’t touched my steering wheel in two days. I think it’s time, Tesla AI,” the longtime FSD tester wrote

AI DRIVR’s comment received quite a bit of support from fellow Tesla drivers, some of whom noted that the improvements that were implemented in V14.1.2 are substantial. Others also agreed that it’s time for FSD to see a wide release.

In his reply to the FSD tester, CEO Elon Musk noted that FSD V14’s wide release would happen with V14.2. “14.2 for widespread use,” Musk wrote in his reply

Advertisement

Mad Max mode makes headlines

One of the key features that was introduced with FSD’s current iteration is Mad Max mode, which allows for higher speeds and more frequent lane changes than the previous “Hurry” mode. Videos and social media posts from FSD testers have shown the system deftly handling complex traffic, merging seamlessly, and maintaining an assertive but safe driving behavior with Mad Max mode engaged.

Tesla AI head Ashok Elluswamy recently noted in a post on X that Mad Max mode was built to handle congested daytime traffic, making it extremely useful for drivers who tend to find themselves in heavy roads during their daily commutes. With Musk now hinting that FSD V14.2 will go on wide release, it might only be a matter of time before the larger Tesla fleet gets to experience the notable improvements of FSD’s V14 update.

Continue Reading

News

Multiple Tesla Cybercab units spotted at Giga Texas crash test facility

The vehicles were covered, but one could easily recognize the Cybercab’s sleek lines and compact size.

Published

on

Credit: @JoeTegtmeyer/X

It appears that Tesla is ramping up its activities surrounding the development and likely initial production of the Cybercab at Giga Texas. This was, at least, hinted at in a recent drone flyover of the massive electric vehicle production facility in Austin. 

Cybercab sightings fuel speculations

As observed by longtime Giga Texas drone operator Joe Tegtmeyer, Tesla had several covered Cybercab units outside the facility’s crash testing facility at the time of his recent flyover. The vehicles were covered, but one could easily recognize the Cybercab’s sleek lines and compact size. Tegtmeyer also observed during his flyover that production of the Model Y Standard seems to be hitting its pace.

The drone operator noted that the seven covered Cybercabs might be older prototypes being decommissioned or new units awaiting crash tests. Either scenario points to a ramp-up in Cybercab activity at Giga Texas, however. “In either case, this is another datapoint indicating production is getting closer to happening,” Tegtmeyer wrote on X, highlighting that the autonomous two-seaters were quite exciting to see.

Cybercab production targets

This latest sighting follows reports of renewed Cybercab appearances at both the Fremont Factory and Giga Texas. A test unit was recently spotted driving on Giga Texas’ South River Road. Another Cybercab, seen at Tesla’s Fremont Factory, appeared to be manually driven, suggesting that the vehicle’s current prototypes may still be produced with temporary steering controls.

The Tesla Cybercab is designed to be the company’s highest-volume vehicle, with CEO Elon Musk estimating that the autonomous two-seater should see an annual production rate of about 2 million units per year. To accomplish this, Tesla will be building the Cybercab using its “Unboxed” process, which should help the vehicle’s production line achieve outputs that are more akin to consumer electronics production lines.

Advertisement
Continue Reading

Trending