Connect with us

News

SpaceX Starship website spotted ahead of Elon Musk’s June rocket update

An animation of 2017's iteration of Starship/Super Heavy, previously known as BFR. (SpaceX)

Published

on

It appears that SpaceX is preparing a dedicated website for its proposed Starship point-to-point transport system, potentially capable of transporting dozens of passengers anywhere on Earth in just 30-60 minutes.

Assuming this website is actually a prelude to a SpaceX reveal (it could be completely unrelated), it seems likely that Starship.com will go live sometime around CEO Elon Musk’s planned June 20th update on Starship and Super Heavy. Much like Starlink.com went live on the day of SpaceX’s first dedicated launch, the company may be ready to tease more substantial details and fleshed-out plans for its aspirational Starship airline.

Big Falcon Challenge

Regardless of the theoretical viability of SpaceX’s Earth-to-Earth transport aspirations or the company’s readiness to kick off the publicity for the service, the fact remains that maturing Starship/Super Heavy (formerly BFR) into a system with reliability approaching that of airliners will take at least 5-10 years, if not decades. The idea itself – using reusable rockets to transport customers anywhere on Earth in 30-60 minutes at a cost comparable to business class tickets – is undeniably alluring and theoretically achievable. However, the list of “iff” statements that must first be satisfied for is immense and full of an array of technological firsts, any one of which could be a showstopper.

The greatest challenge of affordable, reliable point-to-point transport relates directly to the need for affordability and reliability. Put simply, rockets are in many ways far more complex than modern airliners, requiring margins of design and error and that would make commercial aircraft engineers blush. Modern FAA regulations currently expect manufacturers and operators to design, build, and fly passenger aircraft such that the chances of catastrophic failure (generally a fatal crash and total hull loss) average one in one billion flight hours. That may sound downright unachievable, but modern airliners routinely reach levels of reliability measured in hundreds of millions of flight hours between loss-of-life failures.

The best records of rocket reliability are currently held by Ariane 5 and Atlas V, reaching success streaks without catastrophic failure of 86 launches and 81 launches, respectively. It’s difficult to compare airliners and rockets, as rockets feature multiple stages and are typically only active for 30-90 minutes. Under the generous and inaccurate assumption that the average Ariane 5 mission accounts for 90 minutes of “flight time”, the most statistically reliable launch vehicle ever built is roughly 1,000,000 to 10,000,000 times less safe than the FAA’s present-day certification requirements. It would be more accurate to compare the distance traveled per catastrophic failure, but that would still indicate that the proven safety record of launch vehicles is perhaps 20,000 to 200,000 times worse than that of modern passenger aircraft.

BFR’s 2017 variation is visualized during an Earth-to-Earth transport launch. (SpaceX)
BFR may have changed radically (and gained a new name) since its 2016 reveal, but SpaceX executives have continued to indicate that Earth-to-Earth transport remains a serious ambition for the company.

Extreme reusability: extreme reliability?

Additionally, most modern rockets are expended, although SpaceX is doing everything it can to flip that equation. The only conceivable way to sustain a real commercial market for suborbital, hypersonic passenger transportation – aside from guaranteeing that passengers are unlikely to die – is to implement a level of rapid reusability that is entirely unprecedented in spaceflight. As it turns out, regardless of any Earthbound spaceliner ambitions the company may have, SpaceX’s ultimate mission is to accomplish precisely that goal, albeit in order to colonize Mars in a practical timeframe.

What has never explicitly been a part of SpaceX’s goal, however, is achieving that level of extreme reusability simultaneously alongside airliner-class reliability. Accepting high levels of risk has always been front and center to Elon Musk’s presentations on SpaceX’s BFR-powered Mars ambitions, with the CEO often indicating that chances of death would be quite high on early missions to the Red Planet. Of course, surviving and building a colony on Mars is a fair bit riskier than anything specifically centered around Earth and suborbital flight regimes.

To make it to Mars, Starship will have to launch, refuel 3-10 times in Earth orbit, undergo a 3-6 month journey through deep space, put extreme stress on its heat shield during Mars aerobraking and reentry, and then land on another planet. For Earth-to-Earth missions, Starship would be subjected to comparatively gentle reentries of ~7.5 km/s, lower than orbital velocity. (SpaceX)

All of this is to say that SpaceX may or may not succeed in its ambition of developing a spacecraft/booster that is as extraordinarily reliable as it is reusable, just as SpaceX may or may not publish a website dedicated to Earth-to-Earth Starship transport sometime next month. Stay tuned to find out on the next episode!

Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Elon Musk confirms Tesla AI6 chip is Project Dojo’s successor

Tesla’s AI5 and AI6 chips are expected to be rolled out to the company’s consumer products.

Published

on

tesla-supercomputer-pre-dojo
Credit: Tim Zaman/Twitter

Earlier this week, reports emerged stating that Tesla has stepped back from its Project Dojo initiative. While the reports were initially framed as a negative development for the electric vehicle maker’s autonomous driving efforts, CEO Elon Musk later noted on X that Tesla was indeed halting its Dojo initiative.

Elon Musk’s Confirmation

As per Musk, Tesla was shuttering Project Dojo because it does not make sense for the company to divide its resources and scale two different AI chip designs. Dojo, after all, is designed to train the company’s autonomous driving program, and thus, it would not be rolled out to Tesla’s consumer products.

In a series of posts on X, Musk stated that it would make sense to just use Tesla’s AI5/AI6 to train its FSD and Autopilot systems. “In a supercomputer cluster, it would make sense to put many AI5/AI6 chips on a board, whether for inference or training, simply to reduce network cabling complexity & cost by a few orders of magnitude,” Musk said.

Tesla’s AI5 and AI6 chips are expected to be rolled out to the company’s consumer products, from Optimus to the Cybercab to the next-generation Roadster.

AI6 is Dojo’s Successor

What was particularly interesting about Musk’s comment was his mention of using AI5/AI6 chips for training. As per Musk, this strategy could be seen as “Dojo 3” in a way, since the performance of Tesla’s AI5 and AI6 chips is already notable. Musk’s comment about using AI6 chips for training caught the eye of many, including Apple and Rivian alumnus Phil Beisel, who noted that “AI6 is now Dojo.”

Advertisement

“Dojo is Tesla’s AI training supercomputer, built around a custom chip known as the D1. The D1 and AI5/AI6 share many core design elements, particularly the math operations used in neural networks (e.g., matrix multiplication) and highly parallel processing.

“Dojo had a unique feature: chips arranged in a 5×5 grid using a system-on-wafer design, with etched interconnects enabling high-speed data transfer. In a sense, Dojo will live on as the generalized AI6. Going forward, all efforts will focus on AI6,” the tech veteran wrote in a post on X.

Elon Musk confirmed the Apple alumnus’ musings, with the CEO responding with a “bullseye” emoji. Musk is evidently excited for Tesla’s AI6 chip, which is expected to produced by Samsung’s upcoming Texas fabrication facility. In a post on X, Musk stated that he would personally be walking Samsung’s line to accelerate the output of Tesla’s AI6 computers.

Continue Reading

Cybertruck

Tesla’s new upgrade makes the Cybertruck extra-terrestrial

The upgrade was announced by the electric vehicle maker on social media platform X.

Published

on

Credit: Tesla

It took a while, but the Tesla Cybertruck’s rock sliders and battery armor upgrades have finally arrived. The upgrade was announced by the electric vehicle maker on social media platform X, to much appreciation from Cybertruck owners.

Tesla Releases Cybertruck Armor Package

As could be seen in Tesla’s official Shop, the Cybertruck Terrestrial Armor Package is available only for Foundation Series units for now, though non-Foundation Series vehicles should have access to the upgrade around September 2025. Price-wise, the armor package is quite reasonable at $3,500.

For that price, Cybertruck owners would be able to acquire enhanced rock sliders and an underbody battery shield that should allow the all-electric pickup truck to go through harsh terrain without any issues. Each purchase of the Terrestrial Armor Package includes 1 Underbody shield, 1 Left side structural rocker, and 1 Right side structural rocker.

Most importantly, the Armor Package’s price includes shipment to the customer’s preferred Tesla Service Center and installation.

Extra-Terrestrial

Tesla describes its Cybertruck Armor Package as follows: “Get extra-terrestrial. The Cybertruck Terrestrial Armor Package includes enhanced rock sliders and an underbody battery shield to provide greater protection from rocks and debris when off-roading on tough terrain. The rock sliders are constructed from coated steel and the underbody battery shield is constructed from aluminum for greater protection against scraping.”

Advertisement

Initial impressions from a Cybertruck owner who was fortunate enough to test the Armor Package in real-world off-road conditions have been positive. The item’s pricing also seems to be quite appreciated by Cybertruck owners in forums such as the Cybertruck Owners Club, with some members stating that they would be acquiring the package for their own all-electric pickup trucks.

Continue Reading

News

Tesla Model Y L reportedly entered mass production in Giga Shanghai

The vehicle is expected to be a larger version of the best-selling Model Y crossover.

Published

on

Credit: Tesla Asia/X

Reports from industry watchers in China have suggested that the Tesla Model Y L has started mass production at Gigafactory Shanghai. The vehicle is expected to be a larger version of the best-selling Model Y crossover, offering three rows and six seats thanks to a longer wheelbase.

Tesla Model Y L Production Rumors

Reports about the new Model Y variant’s alleged milestone were initially shared on Weibo, with some industry watchers stating that the vehicle has already started mass production. Tesla China is reportedly surveying which of its domestic stores would have the first display units of the six-seat Model Y. 

The Model Y L’s steady march towards production was evident this past week, with recent reports indicating that the vehicle’s key specs have already been listed in the China Ministry of Industry and Information Technology’s (MIIT) latest batch of new energy vehicle models that are eligible for vehicle purchase tax exemptions.

As per the MIIT’s list, the Model Y L will be a dual motor vehicle that is equipped with an 82.0-kWh lithium-ion battery from LG Energy Solution. The vehicle will feature six seats with two captain seats on the second row, as well as a CLTC range of 751 km. 

Tesla Model Y L Potential

The potential of the Model Y L is vast, considering that it is produced in the existing Model Y lines of Tesla’s factories. This should slash new vehicle tooling costs and potential ramp-up issues. Three-row SUVs also command a pretty notable market that has mostly only been accessed by the more expensive Model X. With the Model Y L’s lower price, Tesla could become more competitive in the three-row SUV segment.

Advertisement

As noted by longtime Tesla owner and investor @_SFTahoe, the Model Y L could also become a more premium option for the company’s Robotaxi business, thanks to its second row captain seats and spacious interior. The expansion of Model Y L Robotaxis should also be impressive considering Tesla’s mastery of mass manufacturing techniques. 

Continue Reading

Trending