News
SpaceX’s first thrice-flown Cargo Dragon returns from orbit with Starship tiles intact
After a flawless reentry and splashdown on August 27th, SpaceX’s first thrice-flown Cargo Dragon spacecraft completed its latest mission, arriving in Port of Los Angeles aboard SpaceX vessel NRC Quest.
The successful completion of NASA Commercial Resupply Mission 18 (CRS-18) means that SpaceX is officially the first and only company to launch the same orbital spacecraft three times. Meanwhile, Cargo Dragon capsule C108 also happened to mark the first known orbital flight test of hardware that may be destined for use on SpaceX’s next-generation Starship launch vehicle, taking the shape of four ceramic tiles installed as part of its ablative PICA-X heat shield.
Cargo Dragon’s CRS-18 mission successfully lifted off on its way to the International Space Station (ISS) on July 25th and was berthed to the ISS roughly two days later, completed its delivery of several tons worth of cargo. During the launch webcast, one of the SpaceX hosts noted that black tiles visible on Cargo Dragon’s heat shield – distinct beside its silvery water-sealed PICA-X tiles – were prototypes of a ceramic heat shield material being analyzed for possible use on Starship.
CEO Elon Musk confirmed this after the first launch attempt was scrubbed by weather, stating that SpaceX was looking into the use of “thin [ceramic] tiles” to protect Starship’s windward (atmosphere-facing) half during orbital reentries. Prior to this development, Musk had proposed and posted videos of real-world tests of a steel Starship heat shield concept, in which extra energy could be wicked away by ‘transpiring’ liquid oxygen or methane through microscopic holes on each tile’s leading edge.
Although particular species of stainless steel do feature exceptionally high melting points and structural characteristics at ultra-high temperatures (> 1400C/2500F), some unofficial analyses of the numbers involved indicated that the density and weight of steel could rapidly hinder any benefits derived from its use as a heat shield. Musk appeared to confirm this in his July 24th comments, indicating that thin ceramic tiles on the windward side and nothing on the leeward side of Starship looked like the “lightest option”.

Indeed, ceramics were so prevalent on the Space Shuttle – the only semi-routinely reusable space plane ever developed – in large part because they can be made spectacularly light. The Shuttle’s main ceramic tiles had a density of 155 kg/m³ (9 lb/ft³), about five times denser than styrofoam or roughly the same density as freshly-fallen snow and balsa wood. Stainless steel is about 50 times denser, on average. To use Musk’s own 2017 turn-of-phrase, adding thick steel tiles to Starship’s already-steel skin was probably a bit too much like “building a box in a box”, whereas prioritizing ceramic tiles presumably cuts the shield’s mass by a factor of something like 20-100+.
Although the Shuttle did make extensive use of ceramic shielding, that shielding – specifically, reinforced carbon-carbon (RCC) tiles about as fragile as the material people are familiar with – and a mixture of organizational ineptitude infamously lead to the death 7 NASA astronauts and was generally a nightmare to deal with. SpaceX certainly won’t have to deal with the foam and solid rocket boosters that a lot of Shuttle’s ceramic problems can be traced to, but the company will likely be laser-focused on producing a form of ceramic shielding that isn’t nearly as fragile as Shuttle-derived materials.
The fact that Cargo Dragon’s ceramic Starship tile prototypes appear to be almost completely unscathed after their first orbital reentry is an excellent sign that SpaceX is making progress in the materials design and certification department, or is at least taking flight-testing extremely seriously.
SpaceX CEO Elon Musk is expected to provide an official update on Starship no earlier than late September, a presentation that will likely include details about the route the company is taking with the massive spaceship’s heat shielding.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla is improving Giga Berlin’s free “Giga Train” service for employees
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
Tesla will expand its factory shuttle service in Germany beginning January 4, adding direct rail trips from Berlin Ostbahnhof to Giga Berlin-Brandenburg in Grünheide.
With this initiative, Tesla aims to boost the number of Gigafactory Berlin employees commuting by rail while keeping the shuttle free for all riders.
New shuttle route
As noted in a report from rbb24, the updated service, which will start January 4, will run between the Berlin Ostbahnhof East Station and the Erkner Station at the Gigafactory Berlin complex. Tesla stated that the timetable mirrors shift changes for the facility’s employees, and similar to before, the service will be completely free. The train will offer six direct trips per day as well.
“The service includes six daily trips, which also cover our shift times. The trains will run between Berlin Ostbahnhof (with a stop at Ostkreuz) and Erkner station to the Gigafactory,” Tesla Germany stated.
Even with construction continuing at Fangschleuse and Köpenick stations, the company said the route has been optimized to maintain a predictable 35-minute travel time. The update follows earlier phases of Tesla’s “Giga Train” program, which initially connected Erkner to the factory grounds before expanding to Berlin-Lichtenberg.
Tesla pushes for majority rail commuting
Tesla began production at Grünheide in March 2022, and the factory’s workforce has since grown to around 11,500 employees, with an estimated 60% commuting from Berlin. The facility produces the Model Y, Tesla’s best-selling vehicle, for both Germany and other territories.
The company has repeatedly emphasized its goal of having more than half its staff use public transportation rather than cars, positioning the shuttle as a key part of that initiative. In keeping with the factory’s sustainability focus, Tesla continues to allow even non-employees to ride the shuttle free of charge, making it a broader mobility option for the area.
News
Tesla Model 3 and Model Y dominate China’s real-world efficiency tests
The Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km.
Tesla’s Model 3 and Model Y once again led the field in a new real-world energy-consumption test conducted by China’s Autohome, outperforming numerous rival electric vehicles in controlled conditions.
The results, which placed both Teslas in the top two spots, prompted Xiaomi CEO Lei Jun to acknowledge Tesla’s efficiency advantage while noting that his company’s vehicles will continue refining its own models to close the gap.
Tesla secures top efficiency results
Autohome’s evaluation placed all vehicles under identical conditions, such as a full 375-kg load, cabin temperature fixed at 24°C on automatic climate control, and a steady cruising speed of 120 km/h. In this environment, the Tesla Model 3 posted 20.8 kWh/100 km while the Model Y followed closely at 21.8 kWh/100 km, as noted in a Sina News report.
These figures positioned Tesla’s vehicles firmly at the top of the ranking and highlighted their continued leadership in long-range efficiency. The test also highlighted how drivetrain optimization, software management, and aerodynamic profiles remain key differentiators in high-speed, cold-weather scenarios where many electric cars struggle to maintain low consumption.

Xiaomi’s Lei Jun pledges to continue learning from Tesla
Following the results, Xiaomi CEO Lei Jun noted that the Xiaomi SU7 actually performed well overall but naturally consumed more energy due to its larger C-segment footprint and higher specification. He reiterated that factors such as size and weight contributed to the difference in real-world consumption compared to Tesla. Still, the executive noted that Xiaomi will continue to learn from the veteran EV maker.
“The Xiaomi SU7’s energy consumption performance is also very good; you can take a closer look. The fact that its test results are weaker than Tesla’s is partly due to objective reasons: the Xiaomi SU7 is a C-segment car, larger and with higher specifications, making it heavier and naturally increasing energy consumption. Of course, we will continue to learn from Tesla and further optimize its energy consumption performance!” Lei Jun wrote in a post on Weibo.
Lei Jun has repeatedly described Tesla as the global benchmark for EV efficiency, previously stating that Xiaomi may require three to five years to match its leadership. He has also been very supportive of FSD, even testing the system in the United States.
Elon Musk
Elon Musk reveals what will make Optimus’ ridiculous production targets feasible
Musk recent post suggests that Tesla has a plan to attain Optimus’ production goals.
Elon Musk subtly teased Tesla’s strategy to achieve Optimus’ insane production volume targets. The CEO has shared his predictions about Optimus’ volume, and they are so ambitious that one would mistake them for science fiction.
Musk’s recent post on X, however, suggests that Tesla has a plan to attain Optimus’ production goals.
The highest volume product
Elon Musk has been pretty clear about the idea of Optimus being Tesla’s highest-volume product. During the Tesla 2025 Annual Shareholder Meeting, Musk stated that the humanoid robot will see “the fastest production ramp of any product of any large complex manufactured product ever,” starting with a one-million-per-year line at the Fremont Factory.
Following this, Musk stated that Giga Texas will receive a 10 million-per-year unit Optimus line. But even at this level, the Optimus ramp is just beginning, as the production of the humanoid robot will only accelerate from there. At some point, the CEO stated that a Mars location could even have a 100 million-unit-per-year production line, resulting in up to a billion Optimus robots being produced per year.
Self-replication is key
During the weekend, Musk posted a short message that hinted at Tesla’s Optimus strategy. “Optimus will be the Von Neumann probe,” the CEO wrote in his post. This short comment suggests that Tesla will not be relying on traditional production systems to make Optimus. The company probably won’t even hire humans to produce the humanoid robot at one point. Instead, Optimus robots could simply produce other Optimus robots, allowing them to self-replicate.
The Von Neumann is a hypothetical self-replicating spacecraft proposed by the mathematician and physicist John von Neumann in the 1940s–1950s. The hypothetical machine in the concept would be able to travel to a new star system or location, land, mine, and extract raw materials from planets, asteroids, and moons as needed, use those materials to manufacture copies of itself, and launch the new copies toward other star systems.
If Optimus could pull off this ambitious target, the humanoid robot would indeed be the highest volume product ever created. It could, as Musk predicted, really change the world.
