News
SpaceX’s first thrice-flown Cargo Dragon returns from orbit with Starship tiles intact
After a flawless reentry and splashdown on August 27th, SpaceX’s first thrice-flown Cargo Dragon spacecraft completed its latest mission, arriving in Port of Los Angeles aboard SpaceX vessel NRC Quest.
The successful completion of NASA Commercial Resupply Mission 18 (CRS-18) means that SpaceX is officially the first and only company to launch the same orbital spacecraft three times. Meanwhile, Cargo Dragon capsule C108 also happened to mark the first known orbital flight test of hardware that may be destined for use on SpaceX’s next-generation Starship launch vehicle, taking the shape of four ceramic tiles installed as part of its ablative PICA-X heat shield.
Cargo Dragon’s CRS-18 mission successfully lifted off on its way to the International Space Station (ISS) on July 25th and was berthed to the ISS roughly two days later, completed its delivery of several tons worth of cargo. During the launch webcast, one of the SpaceX hosts noted that black tiles visible on Cargo Dragon’s heat shield – distinct beside its silvery water-sealed PICA-X tiles – were prototypes of a ceramic heat shield material being analyzed for possible use on Starship.
CEO Elon Musk confirmed this after the first launch attempt was scrubbed by weather, stating that SpaceX was looking into the use of “thin [ceramic] tiles” to protect Starship’s windward (atmosphere-facing) half during orbital reentries. Prior to this development, Musk had proposed and posted videos of real-world tests of a steel Starship heat shield concept, in which extra energy could be wicked away by ‘transpiring’ liquid oxygen or methane through microscopic holes on each tile’s leading edge.
Although particular species of stainless steel do feature exceptionally high melting points and structural characteristics at ultra-high temperatures (> 1400C/2500F), some unofficial analyses of the numbers involved indicated that the density and weight of steel could rapidly hinder any benefits derived from its use as a heat shield. Musk appeared to confirm this in his July 24th comments, indicating that thin ceramic tiles on the windward side and nothing on the leeward side of Starship looked like the “lightest option”.

Indeed, ceramics were so prevalent on the Space Shuttle – the only semi-routinely reusable space plane ever developed – in large part because they can be made spectacularly light. The Shuttle’s main ceramic tiles had a density of 155 kg/m³ (9 lb/ft³), about five times denser than styrofoam or roughly the same density as freshly-fallen snow and balsa wood. Stainless steel is about 50 times denser, on average. To use Musk’s own 2017 turn-of-phrase, adding thick steel tiles to Starship’s already-steel skin was probably a bit too much like “building a box in a box”, whereas prioritizing ceramic tiles presumably cuts the shield’s mass by a factor of something like 20-100+.
Although the Shuttle did make extensive use of ceramic shielding, that shielding – specifically, reinforced carbon-carbon (RCC) tiles about as fragile as the material people are familiar with – and a mixture of organizational ineptitude infamously lead to the death 7 NASA astronauts and was generally a nightmare to deal with. SpaceX certainly won’t have to deal with the foam and solid rocket boosters that a lot of Shuttle’s ceramic problems can be traced to, but the company will likely be laser-focused on producing a form of ceramic shielding that isn’t nearly as fragile as Shuttle-derived materials.
The fact that Cargo Dragon’s ceramic Starship tile prototypes appear to be almost completely unscathed after their first orbital reentry is an excellent sign that SpaceX is making progress in the materials design and certification department, or is at least taking flight-testing extremely seriously.
SpaceX CEO Elon Musk is expected to provide an official update on Starship no earlier than late September, a presentation that will likely include details about the route the company is taking with the massive spaceship’s heat shielding.
Check out Teslarati’s Marketplace! We offer Tesla accessories, including for the Tesla Cybertruck and Tesla Model 3.
News
Tesla FSD fleet is nearing 7 billion total miles, including 2.5 billion city miles
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles.
Tesla’s Full Self-Driving (Supervised) fleet is closing in on almost 7 billion total miles driven, as per data posted by the company on its official FSD webpage.
These figures hint at the massive scale of data fueling Tesla’s rapid FSD improvements, which have been quite notable as of late.
FSD mileage milestones
As can be seen on Tesla’s official FSD webpage, vehicles equipped with the system have now navigated over 6.99 billion miles. Tesla owner and avid FSD tester Whole Mars Catalog also shared a screenshot indicating that from the nearly 7 billion miles traveled by the FSD fleet, more than 2.5 billion miles were driven inside cities.
City miles are particularly valuable for complex urban scenarios like unprotected turns, pedestrian interactions, and traffic lights. This is also the difference-maker for FSD, as only complex solutions, such as Waymo’s self-driving taxis, operate similarly on inner-city streets. And even then, incidents such as the San Francisco blackouts have proven challenging for sensor-rich vehicles like Waymos.
Tesla’s data edge
Tesla has a number of advantages in the autonomous vehicle sector, one of which is the size of its fleet and the number of vehicles training FSD on real-world roads. Tesla’s nearly 7 billion FSD miles then allow the company to roll out updates that make its vehicles behave like they are being driven by experienced drivers, even if they are operating on their own.
So notable are Tesla’s improvements to FSD that NVIDIA Director of Robotics Jim Fan, after experiencing FSD v14, noted that the system is the first AI that passes what he described as a “Physical Turing Test.”
“Despite knowing exactly how robot learning works, I still find it magical watching the steering wheel turn by itself. First it feels surreal, next it becomes routine. Then, like the smartphone, taking it away actively hurts. This is how humanity gets rewired and glued to god-like technologies,” Fan wrote in a post on X.
News
Tesla starts showing how FSD will change lives in Europe
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Tesla has launched Europe’s first public shuttle service using Full Self-Driving (Supervised) in the rural Eifelkreis Bitburg-Prüm region of Germany, demonstrating how the technology can restore independence and mobility for people who struggle with limited transport options.
Local officials tested the system on narrow country roads and were impressed by FSD’s smooth, human-like driving, with some calling the service a game-changer for everyday life in areas that are far from urban centers.
Officials see real impact on rural residents
Arzfeld Mayor Johannes Kuhl and District Administrator Andreas Kruppert personally tested the Tesla shuttle service. This allowed them to see just how well FSD navigated winding lanes and rural roads confidently. Kruppert said, “Autonomous driving sounds like science fiction to many, but we simply see here that it works totally well in rural regions too.” Kuhl, for his part, also noted that FSD “feels like a very experienced driver.”
The pilot complements the area’s “Citizen Bus” program, which provides on-demand rides for elderly residents who can no longer drive themselves. Tesla Europe shared a video of a demonstration of the service, highlighting how FSD gives people their freedom back, even in places where public transport is not as prevalent.
What the Ministry for Economic Affairs and Transport says
Rhineland-Palatinate’s Minister Daniela Schmitt supported the project, praising the collaboration that made this “first of its kind in Europe” possible. As per the ministry, the rural rollout for the service shows FSD’s potential beyond major cities, and it delivers tangible benefits like grocery runs, doctor visits, and social connections for isolated residents.
“Reliable and flexible mobility is especially vital in rural areas. With the launch of a shuttle service using self-driving vehicles (FSD supervised) by Tesla in the Eifelkreis Bitburg-Prüm, an innovative pilot project is now getting underway that complements local community bus services. It is the first project of its kind in Europe.
“The result is a real gain for rural mobility: greater accessibility, more flexibility and tangible benefits for everyday life. A strong signal for innovation, cooperation and future-oriented mobility beyond urban centers,” the ministry wrote in a LinkedIn post.
News
Tesla China quietly posts Robotaxi-related job listing
Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Tesla has posted a new job listing in Shanghai explicitly tied to its Robotaxi program, fueling speculation that the company is preparing to launch its dedicated autonomous ride-hailing service in China.
As noted in the listing, Tesla China is currently seeking a Low Voltage Electrical Engineer to work on circuit board design for the company’s autonomous vehicles.
Robotaxi-specific role
The listing, which was shared on social media platform X by industry watcher @tslaming, suggested that Tesla China is looking to fill the role urgently. The job listing itself specifically mentions that the person hired for the role will be working on the Low Voltage Hardware team, which would design the circuit boards that would serve as the nervous system of the Robotaxi.
Key tasks for the role, as indicated in the job listing, include collaboration with PCB layout, firmware, mechanical, program management, and validation teams, among other responsibilities. The role is based in Shanghai.
China Robotaxi launch
China represents a massive potential market for robotaxis, with its dense urban centers and supportive policies in select cities. Tesla has limited permission to roll out FSD in the country, though despite this, its vehicles have been hailed as among the best in the market when it comes to autonomous features. So far, at least, it appears that China supports Tesla’s FSD and Robotaxi rollout.
This was hinted at in November, when Tesla brought the Cybercab to the 8th China International Import Expo (CIIE) in Shanghai, marking the first time that the autonomous two-seater was brought to the Asia-Pacific region. The vehicle, despite not having a release date in China, received a significant amount of interest among the event’s attendees.