Connect with us
Tesla-4680-battery-cells-3 Tesla-4680-battery-cells-3

News

Tesla 4680 cells compared with BYD Blade and CATL Qilin structural batteries

Image used with permission for Teslarati. (Credit: Tom Cross)

Published

on

The battle for the dominance of the electric vehicle sector would likely be determined by the market’s key battery makers. With this in mind, companies such as BYD, CATL, and Tesla — all of whom are exploring the structural battery form factor — have the chance to become the trailblazers of the next generation of electric car batteries. 

During its Battery Day event, Tesla announced its 4680 cells, which are used alongside the company’s structural battery pack. BYD, on the other hand, has also released its Blade batteries, which also adopt a non-modular approach. CATL’s Qilin batteries are in the same segment, with its structural battery design. 

Electric vehicle battery enthusiast Jordan Giesige of YouTube’s The Limiting Factor channel recently conducted a comparison of the advantages and disadvantages of Tesla, BYD, and CATL’s next-generation structural packs. Each battery pack was evaluated according to several factors, such as design, rigidity, packing and energy density, and safety, before being ranked. It should be noted that the figures used in the comparisons are drawn from estimates and materials released by Tesla, BYD, and CATL themselves, not current real-world observations. 

As noted by Giesige, Tesla’s 4680 structural battery packs utilize hundreds of cylindrical cells with a cooling ribbon in between every other row of cells. A lid is then placed on top and polyurethane foam is injected into the pack. This polyurethane hardens, and the combination of the foam and the battery cells forms a rigid, honeycomb-type structure. 

CATL Qilin batteries, which could be fitted with both nickel and iron-based cells, integrate thermal pads, the liquid cooling plate, and the cross bracing to create what could be described as structural cooling. The structural cooling is placed between each row of prismatic battery cells, and the cells themselves are placed into the pack directly without any modules. BYD Blade batteries use iron-based prismatic cells, though these cells are longer and thinner than those used by CATL. The cells are then stretched across the BYD Blade battery pack, allowing the cells themselves to replace conventional steel beams. 

Advertisement
-->
Credit: The Limiting Factor/Twitter

In the rankings of the next-generation batteries, the YouTube host noted that Tesla’s 4680 structural battery pack would likely be the most rigid among its peers. Tesla’s 4680 pack loses out in terms of packing density, however, as BYD and CATL’s use of prismatic cells maximizes volumetric energy density. With this in mind, and considering that CATL’s Qilin batteries can be fitted with high-energy density nickel-based cells, a nickel-based Qilin battery would likely be more energy dense than a nickel-based Tesla 4680 pack or a BYD Blade structural battery, which uses less energy dense iron-based cells.

As for cooling, Giesige noted that the BYD Blade batteries’ plate cooling would likely fall short of the Tesla 4680 pack and CATL Qilin battery’s cooling systems. In its marketing materials, CATL highlighted that cooling the sides of the Qilin battery increases the pack’s cooling area four times. Tesla’s 4680 battery also uses better cooling than BYD’s Blade batteries with its side cooling system, though it would likely not be as good as the cooling of CATL’s Qilin structural packs

While BYD’s Blade batteries lose out in cooling, they are also likely the safest among its peers. This is because the BYD Blade battery uses iron-based cells, which have a higher decomposition and lower heat release temperature than the nickel-based cells used in Tesla’s 4680 cells and CATL’s nickel-based Qilin batteries. An iron-based Qilin battery comes second to the BYD Blade, partly due to its use of shorter and thicker prismatic cells, which may trap more heat. 

A Qilin pack with nickel-based cells was ranked last in terms of safety by the battery enthusiast, as Tesla’s 4680 pack with nickel-based cells features several safety systems, such as an overpressure mechanism on the bottom of the cells themselves. Since 4680 cells are also smaller than the prismatic cells used in the BYD Blade and CATL Qilin, they contain less energy. The 4680 cells themselves are enclosed in a thick shell as well, which are about 2-3 times thicker than a conventional battery. 

Overall, Giesige noted that Tesla’s 4680 cells are likely the best all-rounder compared to its peers in the structural battery segment. The overall scores of the BYD Blade and CATL Qilin batteries bode well for Tesla’s future, however, as the companies could become suppliers of the EV maker in the future. CATL is already supplying Tesla with LFP batteries today, and BYD is heavily rumored to be a Tesla supplier as well. In a way, the analysis of the next-generation structural EV batteries shows that Tesla is not alone in pushing the battery industry forward. 

Watch The Limiting Factor‘s full analysis in the video below. 

Don’t hesitate to contact us with news tips. Just send a message to simon@teslarati.com to give us a heads up.

Advertisement
-->

Simon is an experienced automotive reporter with a passion for electric cars and clean energy. Fascinated by the world envisioned by Elon Musk, he hopes to make it to Mars (at least as a tourist) someday. For stories or tips--or even to just say a simple hello--send a message to his email, simon@teslarati.com or his handle on X, @ResidentSponge.

Advertisement
Comments

News

Tesla tinkering with Speed Profiles on FSD v14.2.1 has gone too far

Published

on

Credit: Tesla

Tesla recently released Full Self-Driving (FSD) v14.2.1, its latest version, but the tinkering with Speed Profiles has perhaps gone too far.

We try to keep it as real as possible with Full Self-Driving operation, and we are well aware that with the new versions, some things get better, but others get worse. It is all part of the process with FSD, and refinements are usually available within a week or so.

However, the latest v14.2.1 update has brought out some major complaints with Speed Profiles, at least on my end. It seems the adjustments have gone a tad too far, and there is a sizeable gap between Profiles that are next to one another.

The gap is so large that changing between them presents a bit of an unwelcome and drastic reduction in speed, which is perhaps a tad too fast for my liking. Additionally, Speed Profiles seem to have a set Speed Limit offset, which makes it less functional in live traffic situations.

Before I go any further, I’d like to remind everyone reading this that what I am about to write is purely my opinion; it is not right or wrong, or how everyone might feel. I am well aware that driving behaviors are widely subjective; what is acceptable to one might be unacceptable to another.

Speed Profiles are ‘Set’ to a Speed

From what I’ve experienced on v14.2.1, Tesla has chosen to go with somewhat of a preset max speed for each Speed Profile. With ‘Hurry,’ it appears to be 10 MPH over the speed limit, and it will not go even a single MPH faster than that. In a 55 MPH zone, it will only travel 65 MPH. Meanwhile, ‘Standard’ seems to be fixed at between 4-5 MPH over.

This is sort of a tough thing to have fixed, in my opinion. The speed at which the car travels should not be fixed; it should be more dependent on how traffic around it is traveling.

It almost seems as if the Speed Profile chosen should be more of a Behavior Profile. Standard should perform passes only to traffic that is slower than the traffic. If traffic is traveling at 75 MPH in a 65 MPH zone, the car should travel at 75 MPH. It should pass traffic that travels slower than this.

Hurry should be more willing to overtake cars, travel more than 10 MPH over the limit, and act as if someone is in a hurry to get somewhere, hence the name. Setting strict limits on how fast it will travel seems to be a real damper on its capabilities. It did much better in previous versions.

Some Speed Profiles are Too Distant from Others

This is specifically about Hurry and Mad Max, which are neighbors in the Speed Profiles menu. Hurry will only go 10 MPH over the limit, but Mad Max will travel similarly to traffic around it. I’ve seen some people say Mad Max is too slow, but I have not had that opinion when using it.

In a 55 MPH zone during Black Friday and Small Business Saturday, it is not unusual for traffic around me to travel in the low to mid-80s. Mad Max was very suitable for some traffic situations yesterday, especially as cars were traveling very fast. However, sometimes it required me to “gear down” into Hurry, especially as, at times, it would try to pass slower traffic in the right lane, a move I’m not super fond of.

We had some readers also mention this to us:

After switching from Mad Max to Hurry, there is a very abrupt drop in speed. It is not violent by any means, but it does shift your body forward, and it seems as if it is a tad drastic and could be refined further.

Continue Reading

News

Tesla’s most affordable car is coming to the Netherlands

The trim is expected to launch at €36,990, making it the most affordable Model 3 the Dutch market has seen in years.

Published

on

Tesla is preparing to introduce the Model 3 Standard to the Netherlands this December, as per information obtained by AutoWeek. The trim is expected to launch at €36,990, making it the most affordable Model 3 the Dutch market has seen in years. 

While Tesla has not formally confirmed the vehicle’s arrival, pricing reportedly comes from a reliable source, the publication noted.

Model 3 Standard lands in NL

The U.S. version of the Model 3 Standard provides a clear preview of what Dutch buyers can expect, such as a no-frills configuration that maintains the recognizable Model 3 look without stripping the car down to a bare interior. The panoramic glass roof is still there, the exterior design is unchanged, and Tesla’s central touchscreen-driven cabin layout stays intact.

Cost reductions come from targeted equipment cuts. The American variant uses fewer speakers, lacks ventilated front seats and heated rear seats, and swaps premium materials for cloth and textile-heavy surfaces. Performance is modest compared with the Premium models, with a 0–100 km/h sprint of about six seconds and an estimated WLTP range near 550 kilometers. 

Despite the smaller battery and simpler suspension, the Standard maintains the long-distance capability drivers have come to expect in a Tesla.

Advertisement
-->

Pricing strategy aligns with Dutch EV demand and taxation shifts

At €36,990, the Model 3 Standard fits neatly into Tesla’s ongoing lineup reshuffle. The current Model 3 RWD has crept toward €42,000, creating space for a more competitive entry-level option, and positioning the new Model 3 Standard comfortably below the €39,990 Model Y Standard.

The timing aligns with rising Dutch demand for affordable EVs as subsidies like SEPP fade and tax advantages for electric cars continue to wind down, EVUpdate noted. Buyers seeking a no-frills EV with solid range are then likely to see the new trim as a compelling alternative.

With the U.S. variant long established and the Model Y Standard already available in the Netherlands, the appearance of an entry-level Model 3 in the Dutch configurator seems like a logical next step.

Continue Reading

News

Tesla Model Y is still China’s best-selling premium EV through October

The premium-priced SUV outpaced rivals despite a competitive field, while the Model 3 also secured an impressive position.

Published

on

Credit: Grok Imagine

The Tesla Model Y led China’s top-selling pure electric vehicles in the 200,000–300,000 RMB segment through October 2025, as per Yiche data compiled from China Passenger Car Association (CPCA) figures.

The premium-priced SUV outpaced rivals despite a competitive field, while the Model 3 also secured an impressive position.

The Model Y is still unrivaled

The Model Y’s dominance shines in Yiche’s October report, topping the chart for vehicles priced between 200,000 and 300,000 RMB. With 312,331 units retailed from January through October, the all-electric crossover was China’s best-selling EV in the 200,000–300,000 RMB segment.

The Xiaomi SU7 is a strong challenger at No. 2 with 234,521 units, followed by the Tesla Model 3, which achieved 146,379 retail sales through October. The Model Y’s potentially biggest rival, the Xiaomi YU7, is currently at No. 4 with 80,855 retail units sold.

Efficiency kings

The Model 3 and Model Y recently claimed the top two spots in Autohome’s latest real-world energy-consumption test, outperforming a broad field of Chinese-market EVs under identical 120 km/h cruising conditions with 375 kg payload and fixed 24 °C cabin temperature. The Model 3 achieved 20.8 kWh/100 km while the Model Y recorded 21.8 kWh/100 km, reaffirming Tesla’s efficiency lead.

The results drew immediate attention from Xiaomi CEO Lei Jun, who publicly recognized Tesla’s advantage while pledging continued refinement for his brand’s lineup.

Advertisement
-->

“The Xiaomi SU7’s energy consumption performance is also very good; you can take a closer look. The fact that its test results are weaker than Tesla’s is partly due to objective reasons: the Xiaomi SU7 is a C-segment car, larger and with higher specifications, making it heavier and naturally increasing energy consumption. Of course, we will continue to learn from Tesla and further optimize its energy consumption performance!” Lei Jun wrote in a post on Weibo.

Continue Reading