News
Tesla 4680 cells compared with BYD Blade and CATL Qilin structural batteries
The battle for the dominance of the electric vehicle sector would likely be determined by the market’s key battery makers. With this in mind, companies such as BYD, CATL, and Tesla — all of whom are exploring the structural battery form factor — have the chance to become the trailblazers of the next generation of electric car batteries.
During its Battery Day event, Tesla announced its 4680 cells, which are used alongside the company’s structural battery pack. BYD, on the other hand, has also released its Blade batteries, which also adopt a non-modular approach. CATL’s Qilin batteries are in the same segment, with its structural battery design.
Electric vehicle battery enthusiast Jordan Giesige of YouTube’s The Limiting Factor channel recently conducted a comparison of the advantages and disadvantages of Tesla, BYD, and CATL’s next-generation structural packs. Each battery pack was evaluated according to several factors, such as design, rigidity, packing and energy density, and safety, before being ranked. It should be noted that the figures used in the comparisons are drawn from estimates and materials released by Tesla, BYD, and CATL themselves, not current real-world observations.
As noted by Giesige, Tesla’s 4680 structural battery packs utilize hundreds of cylindrical cells with a cooling ribbon in between every other row of cells. A lid is then placed on top and polyurethane foam is injected into the pack. This polyurethane hardens, and the combination of the foam and the battery cells forms a rigid, honeycomb-type structure.
CATL Qilin batteries, which could be fitted with both nickel and iron-based cells, integrate thermal pads, the liquid cooling plate, and the cross bracing to create what could be described as structural cooling. The structural cooling is placed between each row of prismatic battery cells, and the cells themselves are placed into the pack directly without any modules. BYD Blade batteries use iron-based prismatic cells, though these cells are longer and thinner than those used by CATL. The cells are then stretched across the BYD Blade battery pack, allowing the cells themselves to replace conventional steel beams.

In the rankings of the next-generation batteries, the YouTube host noted that Tesla’s 4680 structural battery pack would likely be the most rigid among its peers. Tesla’s 4680 pack loses out in terms of packing density, however, as BYD and CATL’s use of prismatic cells maximizes volumetric energy density. With this in mind, and considering that CATL’s Qilin batteries can be fitted with high-energy density nickel-based cells, a nickel-based Qilin battery would likely be more energy dense than a nickel-based Tesla 4680 pack or a BYD Blade structural battery, which uses less energy dense iron-based cells.
As for cooling, Giesige noted that the BYD Blade batteries’ plate cooling would likely fall short of the Tesla 4680 pack and CATL Qilin battery’s cooling systems. In its marketing materials, CATL highlighted that cooling the sides of the Qilin battery increases the pack’s cooling area four times. Tesla’s 4680 battery also uses better cooling than BYD’s Blade batteries with its side cooling system, though it would likely not be as good as the cooling of CATL’s Qilin structural packs.
While BYD’s Blade batteries lose out in cooling, they are also likely the safest among its peers. This is because the BYD Blade battery uses iron-based cells, which have a higher decomposition and lower heat release temperature than the nickel-based cells used in Tesla’s 4680 cells and CATL’s nickel-based Qilin batteries. An iron-based Qilin battery comes second to the BYD Blade, partly due to its use of shorter and thicker prismatic cells, which may trap more heat.


A Qilin pack with nickel-based cells was ranked last in terms of safety by the battery enthusiast, as Tesla’s 4680 pack with nickel-based cells features several safety systems, such as an overpressure mechanism on the bottom of the cells themselves. Since 4680 cells are also smaller than the prismatic cells used in the BYD Blade and CATL Qilin, they contain less energy. The 4680 cells themselves are enclosed in a thick shell as well, which are about 2-3 times thicker than a conventional battery.
Overall, Giesige noted that Tesla’s 4680 cells are likely the best all-rounder compared to its peers in the structural battery segment. The overall scores of the BYD Blade and CATL Qilin batteries bode well for Tesla’s future, however, as the companies could become suppliers of the EV maker in the future. CATL is already supplying Tesla with LFP batteries today, and BYD is heavily rumored to be a Tesla supplier as well. In a way, the analysis of the next-generation structural EV batteries shows that Tesla is not alone in pushing the battery industry forward.
Watch The Limiting Factor‘s full analysis in the video below.
Don’t hesitate to contact us with news tips. Just send a message to simon@teslarati.com to give us a heads up.
News
Tesla Semi lines up for $165M in California incentives ahead of mass production
The update was initially reported by The Los Angeles Times.
Tesla is reportedly positioned to receive roughly $165 million in California clean-truck incentives for its Semi.
The update was initially reported by The Los Angeles Times.
As per the Times, the Tesla Semi’s funding will come from California’s Hybrid and Zero-Emission Truck and Bus Incentive Project (HVIP), which was designed to accelerate the adoption of cleaner medium- and heavy-duty vehicles. Since its launch in 2009, the HVIP has distributed more than $1.6 billion to support zero-emission trucks and buses across the state.
In recent funding rounds, nearly 1,000 HVIP vouchers were provisionally reserved for the Tesla Semi, giving Tesla a far larger share of available funding than any other automaker. An analysis by the Times found that even after revisions to public data, Tesla still accounts for about $165 million in incentives. The next-largest recipient, Canadian bus manufacturer New Flyer, received roughly $68 million.
This is quite unsurprising, however, considering that the Tesla Semi does not have a lot of competition in the zero-emissions trucking segment.
To qualify for HVIP funding, vehicles must be approved by the California Air Resources Board and listed in the program catalog, as noted in an electrive report. When the Tesla Semi voucher applications were submitted, public certification records only showed eligibility for the 2024 model year, with later model years not yet listed.
State officials have stated that certification details often involve confidential business information and that funding will only be paid once vehicles are fully approved and delivered. Still, the first-come, first-served nature of HVIP means large voucher reservations can effectively crowd out competing electric trucks. Incentive amounts for the Semi reportedly ranged from about $84,000 to as much as $351,000 per vehicle after data adjustments.
Unveiled in 2017, the Tesla Semi has seen limited deliveries so far, though CEO Elon Musk has recently reiterated that the Class 8 all-electric truck will enter mass production this year.
Elon Musk
Tesla reveals major info about the Semi as it heads toward ‘mass production’
Some information, like trim levels and their specs were not revealed by Tesla, but now that the Semi is headed toward mass production this year, the company finally revealed those specifics.
Tesla has revealed some major information about the all-electric Semi as it heads toward “mass production,” according to CEO Elon Musk.
The Semi has been working toward a wider production phase after several years of development, pilot programs, and the construction of a dedicated production facility that is specifically catered to the manufacturing of the vehicle.
However, some information, like trim levels and their specs were not revealed by Tesla, but now that the Semi is headed toward mass production this year, the company finally revealed those specifics.
Tesla Semi undergoes major redesign as dedicated factory preps for deliveries
Tesla plans to build a Standard Range and Long Range Trim level of the Semi, and while the range is noted in the company’s newly-released spec list, there is no indication of what battery size will be equipped by them. However, there is a notable weight difference between the two of roughly 3,000 lbs, and the Long Range configuration has a lightning-fast peak charging speed of 1.2 MW.
This information is not available for the Standard Range quite yet.
The spec list is as follows:
- Standard Range:
- 325 miles of range (at 82,000 lbs gross combination weight
- Curb Weight: <20,000
- Energy Consumption: 1.7 kWh per mile
- Powertrain: 3 independent motors on rear axles
- Charging: Up to 60% of range in 30 minutes
- Charge Type: MCS 3.2
- Drive Power: Up to 800 kW
- ePTO (Electric Power Take Off): Up to 25 kW
- Long Range:
- Range: 500 miles (at 82,000 lbs gross combination weight)
- Curb Weight: 23,000 lbs
- Energy Consumption: 1.7 kWh per mile
- Powertrain: 3 independent motors on rear axles
- Charging: Up to 60% of range in 30 minutes
- Charge Type: MCS 3.2
- Peak charging speed: 1.2MW (1,200kW)
- Drive Power: Up to 800 kW
- ePTO (Electric Power Take Off): Up to 25 kW
It is important to keep in mind that the Semi is currently spec’d for local runs, and Tesla has not yet released or developed a sleeper cabin that would be more suitable for longer trips, cross-country hauls, and overnight travel.
Tesla Semi sleeper section and large side storage teased in new video
Instead, the vehicle will be initially used for regional deliveries, as it has in the pilot programs for Pepsi Co. and Frito-Lay for the past several years.
It will enter mass production this year, Musk confirmed on X over the weekend.
Now that the company’s dedicated Semi production facility in Sparks, Nevada, is standing, the timeline seems much more realistic as the vehicle has had its mass manufacturing date adjusted on several occasions.
News
Ferrari Luce EV: Italian supercar maker reveals interior and interface design
Ferrari, the Italian supercar maker, has revealed the name, interior, and interface design of its first-ever electric vehicle project, the Luce, initiating a new chapter in the rich history of the company’s automotive books.
This is the first time Ferrari has revealed such intimate details regarding its introductory EV offering, which has been in the realm of possibility for several years.
As more companies continue to take on EV projects, and some recede from them, supercar companies like Ferrari and Lamborghini are preparing to offer electric powertrains, offering super-fast performance and a new era of speed and acceleration.
Luce – a New Chapter in Ferrari
The company said that the name Luce is “more than a name. It is a vision.” Instead of looking at its first EV offering as a means to enter a new era of design, engineering, and imagination. The company did not want to compromise any of its reputation, high standards, or performance with this new project. It sees it as simply a page turn, and not the closing of a book:
“This new naming strategy reflects how the Ferrari Luce marks a significant addition to the Prancing Horse’s line-up, embodying the seamless expression of tradition and innovation. With its cutting-edge technology, unique design, and best-in-class driving thrills, it unites Ferrari’s racing heritage, the timeless spirit of its sports cars, and the evolving reality of contemporary lifestyles. It testifies to Ferrari’s determination to go beyond expectations: to imagine the future, and to dare. Because leading means illuminating the path ahead – and Luce embodies that mindset.”
Ferrari Luce Design
Ferrari collaborated with LoveFrom, a creative collective founded by Sir Jony Ive and Marc Newson. The pair has been working with Ferrari for five years on the Luce design; everything from materials, ergonomics, interface, and user experience has been designed by the two entities.
The big focus with the interior was to offer “a first, tangible insight into the design philosophy…where innovation meets craftsmanship and cutting-edge design. The team focused on perfecting and refining every solution to its purest form — not to reinvent what already works, but to create a new, carefully considered expression of Ferrari.”
RELATED:
Ferrari CEO compliments Tesla for shaking up the automotive industry
The company also said:
“Ultimately, the design of the Ferrari Luce’s interior is a synthesis of meticulous craftsmanship, respect for tradition, and thoughtful innovation. It offers a new choice for Ferrari enthusiasts – one that honours the past while embracing the future, and exemplifies the brand’s enduring commitment to quality, performance, and cultural significance.”
The appearance of the elements that make up the interior are both an ode to past designs, like the steering wheel, which is a reinterpretation of the iconic 1950s and 1960s wooden three-spoke Nardi wheel, and fresh, new designs, which aim to show the innovation Ferrari is adopting with this new project.
Interior Highlights
Steering Wheel
The Ferrari Luce is a shout-out to the Nardi wheel from the 1950s and 60s. It is constructed of 100% recycled aluminum, and the alloy was developed specifically for the vehicle to “ensure mechanical resistance and a superb surface quality for the anodisation process.”
It weighs 400 grams less than a standard Ferrari steering wheel:

Credit: Ferrari
It features two analogue control modules, ensuring both functionality and clarity, Ferrari said. The carmaker drew inspiration from Formula One single-seaters, and every button has been developed to provide “the most harmonious combination of mechanical and acoustic feedback based on more than 20 evaluation tests with Ferrari test drivers.”
Instrument Cluster and Displays
There are three displays in the Luce — a driver binnacle, control panel, and rear control panel, which have all been “meticulously designed for clarity and purpose.”
The binnacle moves with the steering wheel and is optimized for the driver’s view of the instrumentation and supporting driver performance.
- Credit: Ferrari
- Credit: Ferrari
Displays are crafted by Samsung and were specifically designed for the car, using a “world first – three large cutouts strategically reveal the information generated by a second display behind the top panel, creating a fascinating visual depth that captures the eye.”
Samsung Display engineers created an ultra-light, ultra-thin OLED panel for the vehicle.

Credit: Ferrari
Pricing is still what remains a mystery within the Luce project. Past reports have speculated that the price could be at least €500,000, or $535,000.

