News
Tesla Cybertruck lead engineer shares insights on deep integration and vehicle development
Tesla Cybertruck Lead Engineer Wes Morrill recently shared some insights on the electric vehicle maker’s deep integration and unique approach to car design in a recent post on social media platform X. As could be seen in the engineer’s post, it is Tesla’s intense attention to detail that ultimately makes the company’s vehicles as disruptive as they are today.
Anyone informed who looks at the Tesla Cybertruck would know that the vehicle is a symphony of automotive engineering. Tesla, however, took some time before it reached this point. As per Morrill in his post, Tesla in its early days utilized different teams with collaborative goals in vehicle design. Adopting this system allowed the company to make great cars, but the designs of the vehicles themselves were not optimal.
“A well known example – early days of Tesla there was a battery team and separately a vehicle structures team. Structures team designed their vehicle body to meet given requirements of strength, crashworthiness, torsional stiffness, etc. Likewise, the battery team designed their part to be self contained, it could survive durability, accidentally being dropped, being hit in a crash, etc.
Good analysis – this is what happens when teams work together to make the best product. https://t.co/XAXf70k3jc— Wes (@wmorrill3) September 14, 2024
“As a result, we ended up with was a super dense battery in a strong box like structure, which was then Installed into the vehicle which had a nice space for it to mate into. There were no issues with integration, everything fit together perfectly and met all product goals. It achieved one of the highest crash safety ratings measured at the time.
“But we had a box full of battery cells that was installed into another empty box shaped receptacle on the body. A box in a box. When you simplify it down that far it sounds obviously wrong. The two organizations had achieved their goals, worked together without friction, and the product met its overall goals. Yet the product ended up with a clear lack of optimization as a result of the organizational boundaries of the two teams working in isolation. Nothing was wrong, but it wasn’t optimal,” Morrill wrote.
The Cybertruck Lead Engineer noted that Tesla learned from these experiences, and the company adapted. This is how innovations such as the structural battery pack—which is now being simulated by electric car makers in China—came about. Morrill stated, however, that such changes may require large organizational changes, and there has to be a drive to make the best product regardless of ego.
Have you heard of Conway's Law? It's an interesting observation about the root cause of why large organizations usually make products worse.
In 1967 Melvin Conway wrote "Organizations which design systems are constrained to produce designs which are copies of the communication… pic.twitter.com/SetWd6OfTe— Wes (@wmorrill3) September 14, 2024
“Before the next product was designed, the battery team gave responsibility of the battery structures also to the vehicle structures team. On this iteration, we ended up with the structural battery, which is an integral part of the body and crash structure. Without it, the vehicle body will not work. It’s the literal floor for the vehicle. But the redundancy is gone and the design is more efficient as a result. This vehicle also achieved one of the highest crash safety ratings measured at the time.
“This is a super obvious example (in retrospect) and solved with a fairly large organizational change but you can also see this happen in small technical decisions and doesn’t require structural change to fix. Someone just needs to question if there is a better solution in a team open to criticism. This mindset to work together to make the best product regardless of ego is where you end up with the most innovative products.
“Some smaller examples have been seen when inspecting Cybertruck design. The chassis air suspension which is used to pressurize the battery pack to prevent water ingress. The subwoofer which utilizes the air volume of the body side instead of making the enclosure larger. Centralized zonal vehicle controllers instead of many small distributed controllers. Doors which use the exterior surface as a crash intrusion beam. The pedestrian warning system used as a horn. The list goes on. The excitement and motivation by everyone involved to work across boundaries and actively break down Conway’s Law is one of the many reasons I love working at Tesla,” Morrill wrote.
Don’t hesitate to contact us with news tips. Just send a message to simon@teslarati.com to give us a heads up.
News
SpaceX reaches incredible milestone with Starlink program
SpaceX reached an incredible milestone with its Starlink program with a launch last night, as the 3,000th satellite of the year was launched into low Earth orbit.
On Monday, SpaceX also achieved its 32nd flight with a single Falcon 9 rocket from NASA’s Kennedy Space Center.
The mission was Starlink 6-92, and it utilized the Falcon 9 B1067 for the 32nd time this year, the most-used Falcon booster. The flight delivered SpaceX’s 3000th Starlink satellite of the year, a massive achievement.
There were 29 Starlink satellites launched and deployed into LEO during this particular mission:
Falcon 9 launches 29 @Starlink satellites from Florida pic.twitter.com/utKrXjHzPN
— SpaceX (@SpaceX) December 9, 2025
SpaceX has a current goal of certifying its Falcon boosters for 40 missions apiece, according to Spaceflight Now.
The flight was the 350th orbital launch from the nearby SLC-40, and the 3,000 satellites that have been successfully launched this year continue to contribute to the company’s goal of having 12,000 satellites contributing to global internet coverage.
There are over five million users of Starlink, the latest data shows.
Following the launch and stage separation, the Falcon 9 booster completed its mission with a perfect landing on the ‘Just Read the Instructions’ droneship.
The mission was the 575th overall Falcon 9 launch, highlighting SpaceX’s operational tempo, which continues to be accelerated. The company averages two missions per week, and underscores CEO Elon Musk’s vision of a multi-planetary future, where reliable connectivity is crucial for remote work, education, and emergency response.
As Starlink expands and works toward that elusive and crucial 12,000 satellite goal, missions like 6-92 pave the way for innovations in telecommunications and enable more internet access to people across the globe.
With regulatory approvals in over 100 countries and millions of current subscribers, SpaceX continues to democratize space, proving that reusability is not just feasible, but it’s also revolutionary.
News
Tesla expands new Full Self-Driving program in Europe
Tesla expanded its new Full Self-Driving program, which gives people the opportunity to experience the company’s suite, in Europe.
Tesla recently launched an opportunity for Europeans to experience Full Self-Driving, not in their personal vehicles, but through a new ride-along program that initially launched in Italy, France, and Germany back in late November.
People could experience it by booking a reservation with a local Tesla showroom, but timeslots quickly filled up, making it difficult to keep up with demand. Tesla expanded the program and offered some additional times, but it also had its sights set on getting the program out to new markets.
It finally achieved that on December 9, as it launched rides in Denmark and Switzerland, adding the fourth and fifth countries to the program.
Tesla confirmed the arrival of the program to Denmark and Switzerland on X:
Now available in Denmark & Switzerland
🇩🇰 https://t.co/IpCSwHO566 https://t.co/V2N5EarLNX
— Tesla Europe & Middle East (@teslaeurope) December 9, 2025
The program, while a major contributor to Tesla’s butts in seats strategy, is truly another way for the company to leverage its fans in an effort to work through the regulatory hurdles it is facing in Europe.
Tesla has faced significant red tape in the region, and although it has tested the FSD suite and been able to launch this ride-along program, it is still having some tremendous issues convincing regulatory agencies to allow it to give it to customers.
CEO Elon Musk has worked with regulators, but admitted the process has been “insanely painful.”
The most recent development with FSD and its potential use in Europe dealt with the Dutch approval authority, known as the RDW.
Tesla says Europe could finally get FSD in 2026, and Dutch regulator RDW is key
Tesla said it believes some regulations are “outdated and rules-based,” which makes the suite ineligible for use in the European jurisdiction.
The RDW is working with Tesla to gain approval sometime early next year, but there are no guarantees. However, Tesla’s angle with the ride-along program seems to be that if it can push consumers to experience it and have a positive time, it should be easier for it to gain its footing across Europe with regulatory agencies.
News
Tesla ramps hiring for Roadster as latest unveiling approaches
Tesla published three new positions for the Roadster this week, relating to Battery Manufacturing, General Manufacturing, and Vision Engineering.
Tesla is ramping up hiring for positions related to the Roadster program, the company’s ultra-fast supercar that has been teased to potentially hover by CEO Elon Musk.
The company seems to be crossing off its last handful of things before it plans to unveil the vehicle on April Fool’s Day, just about four months away.
Tesla published three new positions for the Roadster this week, relating to Battery Manufacturing, General Manufacturing, and Vision Engineering. All three are located in Northern California, with two being at the Fremont Factory and the other at the company’s Engineering HQ in Palo Alto.
Technical Program Manager, Battery Manufacturing
Located in Fremont, this role specifically caters to the design of the Roadster to factory operations. It appears this role will mostly have to do with developing and engineering the Roadster’s battery pack and establishing the production processes for it:
“You will foster collaboration across design engineering, manufacturing, quality, facilities, and production to align with company priorities. Additionally, you will understand project opportunities, challenges, and dependencies; translate scattered information into concise, complete messages; and communicate them to every team member. As the business process development lead, you will develop, maintain, and implement tools and processes to accelerate battery manufacturing execution, achieve cross-functional alignment, and deliver highly efficient systems.”
Manufacturing Engineer, Roadster
Also located in Fremont, this role also has to deal with the concept development and launch of battery manufacturing equipment. Tesla says:
“In this role, you will take large-scale manufacturing systems for new battery products and architectures from the early concept development stage through equipment launch, optimization, and handover to local operations teams.”
Manufacturing Vision Engineer, Battery Vision
This position is in Palo Alto at Tesla’s Engineering Headquarters, and requires the design and scale of advanced inspection and control systems to next-generation battery products:
“You’ll work on automation processes that directly improve battery performance, quality, and cost, collaborating with world-class engineers in a fast-paced, hands-on environment.”
Developing and deploying 2D and 3D vision and measurement systems from proof-of-concept to deployment on high-volume battery manufacturing lines is part of the job description.
Roadster Unveiling
Tesla plans to unveil the Roadster on April 1, and although it was planned for late this year, it is nice to see the company put out a definitive date.
Musk said on the Joe Rogan Experience Podcast in late October:
“Whether it’s good or bad, it will be unforgettable. My friend Peter Thiel once reflected that the future was supposed to have flying cars, but we don’t have flying cars. I think if Peter wants a flying car, he should be able to buy one…I think it has a shot at being the most memorable product unveil ever.”
Production should begin between 12 to 18 months after unveiling, so we could see it sometime in 2027.