Connect with us

News

Tesla gives Fiat a wake up call: ‘fake’ electric cars can still manipulate EU emissions standards

Published

on

New CO2 regulations set to take effect in Europe have several loopholes in place that could derail the goal of reducing new car emissions by 37.5% in the region by 2030, according to a study published by advocacy group Transport & Environment. In a worst-case modeling scenario, gaming of the rules could also result in almost two million fewer zero or low emissions vehicles coming to market between 2025 and 2030, and of those in the market, half might be plug-in hybrids built for compliance, not innovation.

In order to propel the creation of a battery electric auto industry in the region, European Union members and parties participating in the discussions over the new CO2 regulations included incentives in the agreement that were tied to specific vehicle sales. Auto manufacturers with 15% of their sales coming from zero and low emission vehicles by 2025 and 35% from 2030 onwards will have their CO2 targets reduced by a maximum of 5%. This effectively means a company’s new fleet-wide CO2 output would only need to be reduced to 34.4% by 2030 instead of 37.5%, as calculated in the study.

Companies have further been allowed to pool their fleets together to help reach these goals, something which Tesla has recently taken advantage of by partnering with Fiat Chrysler. As a manufacturer of zero-emission vehicles, counting Tesla’s fleet with Fiat’s lowers the average per-vehicle CO2 output, thus lessening the burden for Fiat to meet the emissions standards while Tesla profits from the deal.

Chart visualizing the impact of ‘fake’ electric cars (compliance plug-in hybrids) enabled by loopholes in the coming EU CO2 regulations. An estimated 2 million electric vehicles will be lost by 2030; of all low emissions vehicles sold, half (11 million) will be compliance plug-in hybrids. | Credit: Transport & Environment

On its face, the 5% trade-off for lower emissions standards would be the entry of new, more innovative clean energy vehicles on the market; however, the inclusion of plug-in hybrids in that calculation could be problematic and used to game the system. In order to qualify as a low emissions vehicle, a hybrid car only needs to be under a threshold of 50 g/km CO2 output during testing which assumes full use of the vehicle’s battery. Because most of these plug-in hybrids have very low battery ranges, they’re often not used in practice in favor of the internal combustion engine, thus increasing their real-world CO2 output to around 120 g/km.

The technology behind plug-in hybrids is less innovative and therefore cheaper to produce, so the financial appeal of producing more of these types of vehicles over battery-only electric vehicles is high. The Transport & Environment study estimates that this effect will lead to about 2 million fewer all-electric cars being produced in favor of the cheaper, ‘fake’ electric compliance hybrids.

Advertisement

Other loopholes in the EU regulations also contribute to a reduction in CO2 outcomes. Fourteen countries where non-existent or nascent low emissions vehicle markets were identified will receive nearly double the emissions credit for eco-friendly cars sold to encourage development in the regions.

Chart displaying the estimated effect of allowing ‘fake’ electric cars (compliance plug-in hybrids) to receive partial (.7) emissions credits under coming EU CO2 regulations. | Credit: Transport & Environment
Chart displaying the estimated effect of allowing car makers to register low emissions vehicles in nascent markets for double credits under coming EU CO2 regulations and then quickly resell to larger markets. | Credit: Transport & Environment

Simply, a large manufacturer could register thousands of vehicles in one of these markets, acquire double credit for each vehicle, and then quickly sell the vehicles in an established market where demand is higher. When sold, the cars would technically be “used” for record keeping purposes, but new to consumers and presented that way. This would circumvent the point of developing a low emissions market in those countries, further limiting the expansion of low emissions car availability.

The EU member states where double credits apply are Ireland, Greece, Poland, Slovenia, Croatia, the Czech Republic, Slovakia, Bulgaria, Romania, Estonia, Latvia, Lithuania, Cyprus, and Malta.

The final (possible) loophole identified in the Transport & Environment study lies with the inclusion of Norway in the EU regional calculations. The country has not yet formally been included in the 2025/30 standards but is part of the 2020/1 standards currently in effect and will likely be included in the upcoming rules.

Norway is requiring 100% of its vehicles to have zero emissions by 2025, thus guaranteeing sales of those types of cars in a market where ICE vehicles are not competitive. Automakers could concentrate their sales in that region and make less effort to sell in the rest of Europe, all while still remaining compliant with the regulations. Reaching compliance in this manner is another way the intent of the coming CO2 reduction requirements can be manipulated.

Advertisement
Chart displaying the estimated effect of allowing low emissions vehicles sold in Norway to count towards EU emissions averages under coming EU CO2 regulations. | Credit: Transport & Environment

The authors of the Transport & Environment study have laid out their proposals to overcome these loopholes, but considering that they were included to win the support of the auto industry in the region, further changes to the regulations seem unlikely. Also, the study could be taking an overly pessimistic view of the possible outcomes the loopholes could lead to.

Consumer markets, even without significant CO2-related regulation, are already showing trends towards increasing low emission vehicle demands, especially for battery electric vehicles like those sold by Tesla. This “Tesla Effect” has been noted by the upper echelons of legacy auto and several have committed to billions in electric fleet investments. Porsche is unveiling its first production electric vehicle, the Taycan, this September and has plans to retire its diesel-powered lineup and embrace electrification. Ford has also recently committed to electrifying its F-series, most notably the classic F-150, as well as invest $11 billion dollars to produce 40 electrified vehicles by 2022.

Accidental computer geek, fascinated by most history and the multiplanetary future on its way. Quite keen on the democratization of space. | It's pronounced day-sha, but I answer to almost any variation thereof.

Advertisement
Comments

Elon Musk

The Boring Company’s Music City Loop gains unanimous approval

After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project.

Published

on

The-boring-company-vegas-loop-chinatown
(Credit: The Boring Company)

The Metro Nashville Airport Authority (MNAA) has approved a 40-year agreement with Elon Musk’s The Boring Company to build the Music City Loop, a tunnel system linking Nashville International Airport to downtown. 

After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project. Under the terms, The Boring Company will pay the airport authority an annual $300,000 licensing fee for the use of roughly 933,000 square feet of airport property, with a 3% annual increase.

Over 40 years, that totals to approximately $34 million, with two optional five-year extensions that could extend the term to 50 years, as per a report from The Tennesean.

The Boring Company celebrated the Music City Loop’s approval in a post on its official X account. “The Metropolitan Nashville Airport Authority has unanimously (7-0) approved a Music City Loop connection/station. Thanks so much to @Fly_Nashville for the great partnership,” the tunneling startup wrote in its post. 

Advertisement

Once operational, the Music City Loop is expected to generate a $5 fee per airport pickup and drop-off, similar to rideshare charges. Airport officials estimate more than $300 million in operational revenue over the agreement’s duration, though this projection is deemed conservative.

“This is a significant benefit to the airport authority because we’re receiving a new way for our passengers to arrive downtown at zero capital investment from us. We don’t have to fund the operations and maintenance of that. TBC, The Boring Co., will do that for us,” MNAA President and CEO Doug Kreulen said. 

The project has drawn both backing and criticism. Business leaders cited economic benefits and improved mobility between downtown and the airport. “Hospitality isn’t just an amenity. It’s an economic engine,” Strategic Hospitality’s Max Goldberg said.

Opponents, including state lawmakers, raised questions about environmental impacts, worker safety, and long-term risks. Sen. Heidi Campbell said, “Safety depends on rules applied evenly without exception… You’re not just evaluating a tunnel. You’re evaluating a risk, structural risk, legal risk, reputational risk and financial risk.”

Advertisement
Continue Reading

Elon Musk

Tesla announces crazy new Full Self-Driving milestone

The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.

Published

on

Credit: Tesla

Tesla has announced a crazy new Full Self-Driving milestone, as it has officially confirmed drivers have surpassed over 8 billion miles traveled using the Full Self-Driving (Supervised) suite for semi-autonomous travel.

The FSD (Supervised) suite is one of the most robust on the market, and is among the safest from a data perspective available to the public.

On Wednesday, Tesla confirmed in a post on X that it has officially surpassed the 8 billion-mile mark, just a few months after reaching 7 billion cumulative miles, which was announced on December 27, 2025.

The number of miles traveled has contextual significance for two reasons: one being the milestone itself, and another being Tesla’s continuing progress toward 10 billion miles of training data to achieve what CEO Elon Musk says will be the threshold needed to achieve unsupervised self-driving.

The milestone itself is significant, especially considering Tesla has continued to gain valuable data from every mile traveled. However, the pace at which it is gathering these miles is getting faster.

Secondly, in January, Musk said the company would need “roughly 10 billion miles of training data” to achieve safe and unsupervised self-driving. “Reality has a super long tail of complexity,” Musk said.

Training data primarily means the fleet’s accumulated real-world miles that Tesla uses to train and improve its end-to-end AI models. This data captures the “long tail” — extremely rare, complex, or unpredictable situations that simulations alone cannot fully replicate at scale.

This is not the same as the total miles driven on Full Self-Driving, which is the 8 billion miles milestone that is being celebrated here.

The FSD-supervised miles contribute heavily to the training data, but the 10 billion figure is an estimate of the cumulative real-world exposure needed overall to push the system to human-level reliability.

Continue Reading

News

Tesla Cybercab production begins: The end of car ownership as we know it?

While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.

Published

on

Credit: Tesla | X

The first Tesla Cybercab rolled off of production lines at Gigafactory Texas yesterday, and it is more than just a simple manufacturing milestone for the company — it’s the opening salvo in a profound economic transformation.

Priced at under $30,000 with volume production slated for April, the steering-wheel-free, pedal-less Robotaxi-geared vehicle promises to make personal car ownership optional for many, slashing transportation costs to as little as $0.20 per mile through shared fleets and high utilization.

While this could unlock unprecedented mobility abundance — cheaper rides, reduced congestion, freed-up urban space, and massive environmental gains — it risks massive job displacement in ride-hailing, taxi services, and related sectors, forcing society to confront whether the benefits of AI-driven autonomy will outweigh the human costs.

Let’s examine the positives and negatives of what the Cybercab could mean for passenger transportation and vehicle ownership as we know it.

The Promise – A Radical Shift in Transportation Economics

Tesla has geared every portion of the Cybercab to be cheaper and more efficient. Even its design — a compact, two-seater, optimized for fleets and ride-sharing, the development of inductive charging, around 300 miles of range on a small battery, half the parts of the Model 3, and revolutionary “unboxed” manufacturing — is all geared toward rapid production.

Operating at a fraction of what today’s rideshare prices are, the Cybercab enables on-demand autonomy for a variety of people in a variety of situations.

Tesla ups Robotaxi fare price to another comical figure with service area expansion

It could also be the way people escape expensive and risky car ownership. Buying a vehicle requires expensive monthly commitments, including insurance and a payment if financed. It also immediately depreciates.

However, Cybercab could unlock potential profitability for owning a car by adding it to the Robotaxi network, enabling passive income. Cities could have parking lots repurposed into parks or housing, and emissions would drop as shared electric vehicles would outnumber gas cars (in time).

The first step of Tesla’s massive production efforts for the Cybercab could lead to millions of units annually, turning transportation into a utility like electricity — always available, cheap, and safe.

The Dark Side – Job Losses and Industry Upheaval

With Robotaxi and Cybercab, they present the same negatives as broadening AI — there’s a direct threat to the economy.

Uber, Lyft, and traditional taxis will rely on human drivers. Robotaxi will eliminate that labor cost, potentially displacing millions of jobs globally. In the U.S. alone, ride-hailing accounts for billions of miles of travel each year.

There are also potential ripple effects, as suppliers, mechanics, insurance adjusters, and even public transit could see reduced demand as shared autonomy grows. Past automation waves show job creation lags behind destruction, especially for lower-skilled workers.

Gig workers, like those who are seeking flexible income, face the brunt of this. Displaced drivers may struggle to retrain amid broader AI job shifts, as 2025 estimates bring between 50,000 and 300,000 layoffs tied to artificial intelligence.

It could also bring major changes to the overall competitive landscape. While Waymo and Uber have partnered, Tesla’s scale and lower costs could trigger a price war, squeezing incumbents and accelerating consolidation.

Balancing Act – Who Wins and Who Loses

There are two sides to this story, as there are with every other one.

The winners are consumers, Tesla investors, cities, and the environment. Consumers will see lower costs and safer mobility, while potentially alleviating themselves of awkward small talk in ride-sharing applications, a bigger complaint than one might think.

Elon Musk confirms Tesla Cybercab pricing and consumer release date

Tesla investors will be obvious winners, as the launch of self-driving rideshare programs on the company’s behalf will likely swell the company’s valuation and increase its share price.

Cities will have less traffic and parking needs, giving more room for housing or retail needs. Meanwhile, the environment will benefit from fewer tailpipes and more efficient fleets.

A Call for Thoughtful Transition

The Cybercab’s production debut forces us to weigh innovation against equity.

If Tesla delivers on its timeline and autonomy proves reliable, it could herald an era of abundant, affordable mobility that redefines urban life. But without proactive policies — retraining, safety nets, phased deployment — this revolution risks widening inequality and leaving millions behind.

The real question isn’t whether the Cybercab will disrupt — it’s already starting — it’s whether society is prepared for the economic earthquake it unleashes.

Continue Reading