News
Tesla’s Model 3 Heat Pump is a game changer compared to its old system
Tesla’s addition of a Heat Pump to its 2021 Model 3 was installed with the intention of bringing owners of the company’s most affordable vehicle more range and more efficiency. Now that the newly “refreshed” Model 3 is making its way to owners, it is proving to be around three times more efficient than older builds of the vehicle.
A new video from well-known EV content creator and Tesla owner Bjørn Nyland showed that the heat pump gives owners around three times the efficiency compared to the previous HVAC system, which used a Positive Temperature Coefficient, or PTC system. This proves the addition of the heat pump was a strategy that will end up paying dividends to owners in cold climates, especially now as the Winter months are making their way to many owners across the U.S. and European markets.
Nyland compared a brand new 2021 Model 3 to his older version of the car, which does not have a heat pump equipped. Performing stationary tests to see which system was more efficient in heating up the vehicle during a chilly December night was the perfect test in Nyland’s eyes, and he came out of it with results that proved Tesla’s new system was superior to the old one.
Nyland used Camp Mode to test the efficiency of the two cars. Camp Mode maintains a temperature in the cabin while the vehicle is stationary and is ideal for those who sleep in their cars overnight. Because it uses energy from the car’s battery to maintain a comfortable cabin temperature, it was ideal for it to be used during this testing scenario.
After three hours of heating the cabin, both vehicles showed a drop in the state of charge, of course. However, the differences in the drop were night and day. The heat pump-equipped 2021 Model 3 had dropped only 3% in the three-hour span, while the sedan’s pre-heat pump variant had lost 10% of its battery.
The 2021 Model 3 has a 73.5 kWh battery pack with little-t0-no degradation due to its new powertrain that had only 65 kilometers on it. It used only 735 W of energy per hour, meaning 2,205 W were used over the course of the test.
The older Model 3 evidently did not have the efficiency that the new, heat pump-outfitted Model 3 did. After starting at 56%, the three hours of heating the cabin had brought the car’s state of charge down to 46%, meaning it was using roughly three times the amount of energy that the heat pump did. This equated to 2170 W of energy being used per hour by the old Model 3.
It is no secret that using a heat pump is more efficient than the past PTC HVAC system was. Tesla installed the heat pump in the Model Y and made it standard upon the car’s first deliveries in March 2020. Tesla decided to then make it standard in the Model 3 after refreshing the car in October 2020.
Tesla formally adds Heat Pump to Model 3 parts catalog after ‘refresh’
More tests are likely to come that will compare the two systems, but this test shows the efficiency differences in the two cars while heating up. If you’re spending nights in your Model 3, the new 2021 variant may be the way to go to alleviate any concerns about range diminishment overnight.
Nyland’s video comparing the two Tesla vehicles is available below.
News
Tesla wins FCC approval for wireless Cybercab charging system
The decision grants Tesla a waiver that allows the Cybercab’s wireless charging system to be installed on fixed outdoor equipment.
Tesla has received approval from the Federal Communications Commission (FCC) to use Ultra-Wideband (UWB) radio technology in its wireless EV charging system.
The decision grants Tesla a waiver that allows the Cybercab’s wireless charging system to be installed on fixed outdoor equipment. This effectively clears a regulatory hurdle for the company’s planned wireless charging pad for the autonomous two-seater.
Tesla’s wireless charging system is described as follows in the document: “The Tesla positioning system is an impulse UWB radio system that enables peer-to-peer communications between a UWB transceiver installed on an electric vehicle (EV) and a second UWB transceiver installed on a ground-level pad, which could be located outdoors, to achieve optimal positioning for the EV to charge wirelessly.”
The company explained that Bluetooth is first used to locate the charging pad. “Prior to the UWB operation, the vehicular system uses Bluetooth technology for the vehicle to discover the location of the ground pad and engage in data exchange activities (which is not subject to the waiver).”
Once the vehicle approaches the pad, the UWB system briefly activates. “When the vehicle approaches the ground pad, the UWB transceivers will operate to track the position of the vehicle to determine when the optimal position has been achieved over the pad before enabling wireless power charging.”
Tesla also emphasized that “the UWB signals occur only briefly when the vehicle approaches the ground pad; and mostly at ground level between the vehicle and the pad,” and that the signals are “significantly attenuated by the body of the vehicle positioned over the pad.”
As noted by Tesla watcher Sawyer Merritt, the FCC ultimately granted Tesla’s proposal since the Cybercab’s wireless charging system’s signal is very low power, it only turns on briefly while parking, it works only at very short range, and it won’t interfere with other systems.
While the approval clears the way for Tesla’s wireless charging plans, the Cybercab does not appear to depend solely on the new system.
Cybercab prototypes have frequently been spotted charging at standard Tesla Superchargers across the United States. This suggests the vehicle can easily operate within Tesla’s existing charging network even as the wireless system is developed and deployed. With this in mind, it would not be surprising if the first batches of the Cybercab that are deployed and delivered to consumers end up being charged by regular Superchargers.
Elon Musk
Tesla posts updated FSD safety stats as owners surpass 8 billion miles
Tesla shared the milestone as adoption of the system accelerates across several markets.
Tesla has posted updated safety stats for Full Self-Driving Supervised. The results were shared by the electric vehicle maker as FSD Supervised users passed more than 8 billion cumulative miles.
Tesla shared the milestone in a post on its official X account.
“Tesla owners have now driven >8 billion miles on FSD Supervised,” the company wrote in its post on X. Tesla also included a graphic showing FSD Supervised’s miles driven before a collision, which far exceeds that of the United States average.
The growth curve of FSD Supervised’s cumulative miles over the past five years has been notable. As noted in data shared by Tesla watcher Sawyer Merritt, annual FSD (Supervised) miles have increased from roughly 6 million in 2021 to 80 million in 2022, 670 million in 2023, 2.25 billion in 2024, and 4.25 billion in 2025. In just the first 50 days of 2026, Tesla owners logged another 1 billion miles.
At the current pace, the fleet is trending towards hitting about 10 billion FSD Supervised miles this year. The increase has been driven by Tesla’s growing vehicle fleet, periodic free trials, and expanding Robotaxi operations, among others.
Tesla also recently updated the safety data for FSD Supervised on its website, covering North America across all road types over the latest 12-month period.
As per Tesla’s figures, vehicles operating with FSD Supervised engaged recorded one major collision every 5,300,676 miles. In comparison, Teslas driven manually with Active Safety systems recorded one major collision every 2,175,763 miles, while Teslas driven manually without Active Safety recorded one major collision every 855,132 miles. The U.S. average during the same period was one major collision every 660,164 miles.
During the measured period, Tesla reported 830 total major collisions with FSD (Supervised) engaged, compared to 16,131 collisions for Teslas driven manually with Active Safety and 250 collisions for Teslas driven manually without Active Safety. Total miles logged exceeded 4.39 billion miles for FSD (Supervised) during the same timeframe.
Elon Musk
The Boring Company’s Music City Loop gains unanimous approval
After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project.
The Metro Nashville Airport Authority (MNAA) has approved a 40-year agreement with Elon Musk’s The Boring Company to build the Music City Loop, a tunnel system linking Nashville International Airport to downtown.
After eight months of negotiations, MNAA board members voted unanimously on Feb. 18 to move forward with the project. Under the terms, The Boring Company will pay the airport authority an annual $300,000 licensing fee for the use of roughly 933,000 square feet of airport property, with a 3% annual increase.
Over 40 years, that totals to approximately $34 million, with two optional five-year extensions that could extend the term to 50 years, as per a report from The Tennesean.
The Boring Company celebrated the Music City Loop’s approval in a post on its official X account. “The Metropolitan Nashville Airport Authority has unanimously (7-0) approved a Music City Loop connection/station. Thanks so much to @Fly_Nashville for the great partnership,” the tunneling startup wrote in its post.
Once operational, the Music City Loop is expected to generate a $5 fee per airport pickup and drop-off, similar to rideshare charges. Airport officials estimate more than $300 million in operational revenue over the agreement’s duration, though this projection is deemed conservative.
“This is a significant benefit to the airport authority because we’re receiving a new way for our passengers to arrive downtown at zero capital investment from us. We don’t have to fund the operations and maintenance of that. TBC, The Boring Co., will do that for us,” MNAA President and CEO Doug Kreulen said.
The project has drawn both backing and criticism. Business leaders cited economic benefits and improved mobility between downtown and the airport. “Hospitality isn’t just an amenity. It’s an economic engine,” Strategic Hospitality’s Max Goldberg said.
Opponents, including state lawmakers, raised questions about environmental impacts, worker safety, and long-term risks. Sen. Heidi Campbell said, “Safety depends on rules applied evenly without exception… You’re not just evaluating a tunnel. You’re evaluating a risk, structural risk, legal risk, reputational risk and financial risk.”