News
Tesla patent addresses panel gaps using clever clamping assembly
The build quality of Tesla’s vehicles would likely see a notable improvement in the near future. As revealed in a recently published patent, the company is working on a new type of clamping assembly that allows some flexibility between panels during manufacturing. With such a system in place, gaps between a vehicle’s panels could be adjusted and aligned during the assembly process.
Tesla’s newly published patent, titled “Clamping Assembly for Securing Together a Pair of Adjacently Located Panels,” describes a simple yet clever way to address misaligned body panels. Tesla notes that conventional clamps, which are usually utilized to attach body panels to a vehicle’s frame, are unable to connect panels and their individual tolerances effectively due to their rigid structure.
“Although (conventional clamps) can be used to secure adjacently located parts to one another, the clamp does not account for parts that have large manufacturing tolerances or parts that must not be fixed in at least one direction (that is there must be play between the parts). Attempting to use a traditional clamp to secure two parts that must have some play between them may introduce unsightly gaps and/or overlaps between the parts, reducing the aesthetic appearance upon assembly.”
- [Credit: US Patent Office]
- [Credit: US Patent Office]
Diagrams depicting Tesla’s design for its new clamping assembly. [Credit: US Patent Office]
Tesla’s patent outlines a new type of clamping assembly that is more flexible. Such a system enables Tesla to adjust panels during assembly, allowing the company to address any possible misaligned panels before the vehicle is sent off to delivery. Tesla explains the rationale of its new clamp as follows.
“The present invention was derived in light of the foregoing challenges, and it is an object of the present invention to provide a clamping assembly that provides flexibility in securing parts that are manufactured to larger dimensional tolerances and in which play is necessary between adjacent parts during, or after, assembly. The clamping assembly of the present invention can accommodate misalignment of the part or parts owing to variances in one or both parts during manufacture and/or necessary play between the parts by allowing flexibility in adjusting the positions of the parts relative to one another in one direction while still securing the parts to one another. That is, the clamping assembly secures together a pair of manufactured parts, in which the manufactured parts require play along at least one direction while confining the movement of the parts in a second direction.
“According to certain embodiments of the present invention, the clamping assembly includes a retainer member. The retainer member may have a U-shape groove that allows for the insertion of a tab member and a narrow retaining throat that confines a bulbous portion of the tab member in multiple directions. For example, once inserted into the groove of the retainer member, the tab member with the bulbous portion is confined from moving vertically and horizontally. Once inserted into the groove of the retainer member, movement of the tab member with the bulbous portion is possible by sliding the tab member and the bulbous portion thereof relative to a plane P 2 of the groove, i.e., by sliding the tab member and the bulbous portion into or out of the page. Thus, with use of the clamping assembly disclosed herein, some play or flexibility between two panels is possible, and the panels can be adjusted relative to one another during assembly.”
- [Credit: US Patent Office]
- [Credit: US Patent Office]
Diagrams depicting Tesla’s design for its new clamping assembly. [Credit: US Patent Office]
Tesla has been challenged with misaligned panels on its vehicles in the past. When Detroit’s Sandy Munro started his teardown of an early production Model 3, for one, the auto veteran lamented that the vehicle’s panel gaps were so inconsistent, they were reminiscent of a Kia from the 90s. Munro was eventually blown away by the Model 3’s battery, tech, ride quality, and performance, but his criticism of the car’s build quality were notable until he completed his analysis. Tesla later issued a response to Munro’s criticism of the early production Model 3’s build quality, stating that “the standard deviation of all gaps and offsets across the entire car has improved, on average, by nearly 40%, with particular gap improvements visible in the area of the trunk, rear lamps and rear quarter panel.”
A letter to Tesla employees sent last April revealed that Elon Musk is taking the issue of misaligned panels very seriously. In his message, Musk noted that while the build quality of the company’s vehicles continues to improve, Tesla must strive to push harder in ensuring that its electric cars have design tolerances that are a factor of ten better than any other vehicle in the auto industry.
“Most of the design tolerances of the Model 3 are already better than any other car in the world. Soon, they will all be better. This is not enough. We will keep going until the Model 3 build precision is a factor of ten better than any other car in the world. I am not kidding. Our car needs to be designed and built with such accuracy and precision that, if an owner measures dimensions, panel gaps, and flushness, and their measurements don’t match the Model 3 specs, it just means that their measuring tape is wrong,” Musk wrote.
There is no denying that misaligned panels are an issue for Tesla’s electric cars, particularly early production models produced in the past. In a way, such issues are part of Tesla’s growing pains, considering that mastering panel alignment is among the more basic aspects of vehicle manufacturing. That said, Elon Musk’s unrelenting stance on improving build quality, together with clever ways to address and avoid misaligned panels, might soon allow the company to shake off its panel gap issues altogether.
Elon Musk
Starlink achieves major milestones in 2025 progress report
Starlink wrapped up 2025 with impressive growth, adding more than 4.6 million new active customers and expanding service to 35 additional countries, territories, and markets.
Starlink wrapped up 2025 with impressive growth, adding more than 4.6 million new active customers and expanding service to 35 additional countries, territories, and markets. The company also completed deployment of its first-generation Direct to Cell constellation, launching over 650 satellites in just 18 months to enable cellular connectivity.
SpaceX highlighted Starlink’s impressive 2025 progress in an extensive report.
Key achievements from Starlink’s 2025 Progress
Starlink connected over 4.6 million new customers with high-speed internet while bringing service to 35 more regions worldwide in 2025. Starlink is now connecting 9.2 million people worldwide. The service achieved this just weeks after hitting its 8 million customer milestone.
Starlink is now available in 155 markets, including areas that are unreachable by traditional ISPs. As per SpaceX, Starlink has also provided over 21 million airline passengers and 20 million cruise passengers with reliable high-speed internet connectivity during their travels.
Starlink Direct to Cell
Starlink’s Direct to Cell constellation, more than 650 satellites strong, has already connected over 12 million people at least once, marking a breakthrough in global mobile coverage.
Starlink Direct to Cell is currently rolled out to 22 countries and 6 continents, with over 6 million monthly customers. Starlink Direct to Cell also has 27 MNO partners to date.
“This year, SpaceX completed deployment of the first generation of the Starlink Direct to Cell constellation, with more than 650 satellites launched to low-Earth orbit in just 18 months. Starlink Direct to Cell has connected more than 12 million people, and counting, at least once, providing life-saving connectivity when people need it most,” SpaceX wrote.
News
Tesla Giga Nevada celebrates production of 6 millionth drive unit
To celebrate the milestone, the Giga Nevada team gathered for a celebratory group photo.
Tesla’s Giga Nevada has reached an impressive milestone, producing its 6 millionth drive unit as 2925 came to a close.
To celebrate the milestone, the Giga Nevada team gathered for a celebratory group photo.
6 million drive units
The achievement was shared by the official Tesla Manufacturing account on social media platform X. “Congratulations to the Giga Nevada team for producing their 6 millionth Drive Unit!” Tesla wrote.
The photo showed numerous factory workers assembled on the production floor, proudly holding golden balloons that spelled out “6000000″ in front of drive unit assembly stations. Elon Musk gave credit to the Giga Nevada team, writing, “Congrats on 6M drive units!” in a post on X.
Giga Nevada’s essential role
Giga Nevada produces drive units, battery packs, and energy products. The facility has been a cornerstone of Tesla’s scaling since opening, and it was the crucial facility that ultimately enabled Tesla to ramp the Model 3 and Model Y. Even today, it serves as Tesla’s core hub for battery and drivetrain components for vehicles that are produced in the United States.
Giga Nevada is expected to support Tesla’s ambitious 2026 targets, including the launch of vehicles like the Tesla Semi and the Cybercab. Tesla will have a very busy 2026, and based on Giga Nevada’s activities so far, it appears that the facility will be equally busy as well.
News
Tesla Supercharger network delivers record 6.7 TWh in 2025
The network now exceeds 75,000 stalls globally, and it supports even non-Tesla vehicles across several key markets.
Tesla’s Supercharger Network had its biggest year ever in 2025, delivering a record 6.7 TWh of electricity to vehicles worldwide.
To celebrate its busy year, the official @TeslaCharging account shared an infographic showing the Supercharger Network’s growth from near-zero in 2012 to this year’s impressive milestone.
Record 6.7 TWh delivered in 2025
The bar chart shows steady Supercharger energy delivery increases since 2012. Based on the graphic, the Supercharger Network started small in the mid-2010s and accelerated sharply after 2019, when the Model 3 was going mainstream.
Each year from 2020 onward showed significantly more energy delivery, with 2025’s four quarters combining for the highest total yet at 6.7 TWh.
This energy powered millions of charging sessions across Tesla’s growing fleet of vehicles worldwide. The network now exceeds 75,000 stalls globally, and it supports even non-Tesla vehicles across several key markets. This makes the Supercharger Network loved not just by Tesla owners but EV drivers as a whole.
Resilience after Supercharger team changes
2025’s record energy delivery comes despite earlier 2024 layoffs on the Supercharger team, which sparked concerns about the system’s expansion pace. Max de Zegher, Tesla Director of Charging North America, also highlighted that “Outside China, Superchargers delivered more energy than all other fast chargers combined.”
Longtime Tesla owner and FSD tester Whole Mars Catalog noted the achievement as proof of continued momentum post-layoffs. At the time of the Supercharger team’s layoffs in 2024, numerous critics were claiming that Elon Musk was halting the network’s expansion altogether, and that the team only remained because the adults in the room convinced the juvenile CEO to relent.
Such a scenario, at least based on the graphic posted by the Tesla Charging team on X, seems highly implausible.



