Connect with us
Tesla-4680-Structural-Battery-Pack-1 Tesla-4680-Structural-Battery-Pack-1

News

Tesla-funded researchers discover surprising detail about lithium-ion battery discharges

Image used with permission for Teslarati. (Credit: Tom Cross)

Published

on

A potentially crucial reason behind lithium-ion batteries’ tendency to self-discharge has seemingly been discovered by researchers at the Tesla-funded battery research center at Dalhousie University. What’s quite remarkable was that the group’s findings were amazingly simple yet potentially profound. 

Electronic products such as smartphones and laptops tend to self-discharge over time. It’s an all-too-familiar scenario, where a device loses battery charge despite not being used for a period of time. But while this is considered normal today, researchers from Dalhousie University may have discovered the culprit for self-discharging lithium-ion batteries

Dr. Michael Metzger, an assistant professor and the Herzberg-Dahn chair and in the Department of Physics and Atmospheric Science at Dalhousie University, noted that a commercial tape that holds electrodes together in lithium-ion batteries could be a key contributor to the self-discharging process. 

“In commercial battery cells, there is tape — like Scotch tape — that holds the electrodes together, and there is a chemical decomposition of this tape, which creates a molecule that leads to the self-discharge. In our laboratory, we do many highly complex experiments to improve batteries, but this time we discovered a very simple thing. It’s a very simple thing — it is in every plastic bottle, and no one would have thought that this has such a huge impact on how the lithium-ion cells degrade,” Dr. Metzger said. 

To understand lithium-ion battery cells and their self-discharging behaviors, Dr. Metzger and his team opened up several cells and exposed them to various temperatures. To their surprise, the team found that the electrolyte solution in the cell was bright red. Exploring further, the team placed cells with common electrolyte solution into ovens at four different temperatures. Four different oven temperatures were used, ranging from 25°C to 70°C. The cell sample at 25°C remained clear, while the sample at 55°C turned light brown, and the one at 70°C became blood red. The team then performed a chemical analysis to examine the composition of the electrolyte

Advertisement

Following are the team’s observations.

“That’s when (the researchers) found that the polyethylene terephthalate, or PET, in the tape decomposes and creates the molecule that leads to the self-discharge. The molecule is called a redox shuttle because it can travel to the positive side of the electrode, then to the negative side and then back to the positive side. So, it shuttles between the electrodes and that creates the self-discharge, just like lithium is supposed to do. The problem is that the shuttle molecule is doing it all the time in the background, even when no lithium is supposed to move when the battery just sitting there.” 

“It’s something we never expected because no one looks at these inactive components, these tapes and plastic foils in the battery cell but it really needs to be considered if you want to limit side reactions in the battery cell,” Dr. Metzger said. 

Dr. Metzger and his team’s findings can be found below. 

Buechele 2023 J. Electrochem. Soc. 170 010518 by Simon Alvarez on Scribd

Advertisement

Don’t hesitate to contact us with news tips. Just send a message to simon@teslarati.com to give us a heads up.

Simon is an experienced automotive reporter with a passion for electric cars and clean energy. Fascinated by the world envisioned by Elon Musk, he hopes to make it to Mars (at least as a tourist) someday. For stories or tips--or even to just say a simple hello--send a message to his email, simon@teslarati.com or his handle on X, @ResidentSponge.

Advertisement
Comments

Elon Musk

Elon Musk’s Boring Company studying potential Giga Nevada tunnel: report

The early-stage feasibility work was funded by a state-affiliated economic group as officials searched for alternatives to worsening traffic and accidents along Interstate 80.

Published

on

the-boring-company-tesla-robotaxi
(Credit: The Boring Company

Elon Musk’s tunneling startup, The Boring Company, has been studying a potential tunnel system connecting Reno to Tesla Gigafactory Nevada, as per documents obtained by Fortune. The early-stage feasibility work was funded by a state-affiliated economic group as officials searched for alternatives to worsening traffic and accidents along Interstate 80.

Potential Giga Nevada tunnel

Documents reviewed by Fortune showed that The Boring Company received $50,000 in October to produce conceptual designs and a feasibility report for a tunnel beneath a nine-mile stretch of highway leading to Gigafactory Nevada. The payment came from the Economic Development Authority of Western Nevada (EDAWN), a nonprofit that works with the state to attract and expand businesses.

The proposed tunnel was one of several transportation alternatives being explored to address rising congestion and accidents along Interstate 80, which serves the Tahoe-Reno Industrial Center. The massive industrial park houses major employers, including Tesla and Panasonic, both of which had been in contact with the Nevada Governor’s Office regarding potential transportation solutions.

Emails obtained through public records requests showed that Tesla and Panasonic have also supported a separate commuter rail study that would use existing freight rail alongside the Interstate. It remains unclear if The Boring Company’s feasibility report had been completed, and key details for the potential project, including tunnel length, cost, and if autonomous Teslas would be used, were not disclosed.

The-boring-company-vegas-loop-chinatown
(Credit: The Boring Company)

Relieving I-80 congestion

Traffic and accidents along I-80 have increased sharply as data centers and new businesses moved into the 107,000-acre industrial center. State transportation data showed that the number of vehicles traveling certain stretches of the highway during peak hours doubled between January and July 2025 alone. Roughly 22,000 employees commute daily to the industrial park, with nearly 8,000 working for Tesla and more than 4,000 for Panasonic at the Giga Nevada complex.

Bill Thomas, who runs the Regional Transportation Commission of Washoe County, shared his thoughts about safety concerns in the area. “At this point in time, there’s about (one accident) every other day,” he said. He also noted that he is supportive of any projects that could alleviate traffic and accidents on the Interstate. 

Advertisement

“We’re not paying for it. I’m not involved in it. But I understand there are conversations exploring whether that could be done. If there’s a private solution that helps the problem and improves safety, as far as I’m concerned, more power to them,” Thomas stated. 

Continue Reading

News

Tesla might have built redundancies for Cybercab charging

When Tesla unveiled the Cybercab in 2024, the company noted that the autonomous two-seater would utilize wireless charging.

Published

on

Credit: @AdanGuajardo/X

A newly spotted panel on Tesla’s Cybercab prototype may point to a practical backup for the vehicle’s wireless charging system as it nears mass production. 

Tesla watchers have speculated that the panel could house a physical NACS port, which would ensure that the autonomous two-seater could operate reliably even before the company’s wireless charging infrastructure is deployed.

Cybercab possible physical charge port

The discussion was sparked by a post on X by Tesla watcher Owen Sparks, who highlighted a rather interesting panel on the Cybercab’s rear. The panel, which seemed to be present in the prototype units that have been spotted across the United States recently, seemed large enough to house a physical charge port.

When Tesla unveiled the Cybercab in 2024, the company noted that the autonomous two-seater would utilize wireless charging. Since then, however, Tesla has remained largely quiet about the system’s rollout timeline. With the Cybercab expected to enter production in a few months, equipping the vehicle with a physical NACS port would allow it to charge at Superchargers nationwide without relying exclusively on still-undeployed wireless chargers.

Such an approach would not rule out wireless charging long-term. Instead, it would give Tesla flexibility, allowing the Cybercab to operate immediately at scale while wireless charging solutions are rolled out later. For a vehicle designed to operate continuously and autonomously, redundancy in charging options would be a practical move.

Advertisement

Growing Cybercab sightings

Recent sightings of the Cybercab prototype in Chicago point to the same design philosophy. Images shared on social media showed the vehicle coated in road grime, while its rear camera area appeared noticeably cleaner, with visible traces of water on the trunk.

The observation suggests that the Cybercab is equipped with a rear camera washer. As noted by Model Y owner and industry watcher Sawyer Merritt, this is a feature Tesla owners have requested for years, particularly in snowy or wet climates where dirt and slush can obscure cameras and degrade the performance of systems like FSD.

While only the rear camera washer was clearly visible, the sighting raises the possibility that Tesla may equip additional exterior cameras with similar cleaning systems. For a vehicle that operates without a human driver,  after all, maintaining camera visibility in all conditions is essential. Ultimately, the charge-port speculation and camera-washer sightings suggest Tesla is approaching the Cybercab with practicality in mind.

Advertisement
Continue Reading

News

Tesla Model Y dominated China’s NEV sales in December 2025

As per sales data from China, the all-electric crossover finished first among the country’s best-selling EVs and plug-in hybrids.

Published

on

Credit: Grok Imagine

The Tesla Model Y ranked as China’s top-selling new energy vehicle in December, leading an intensely competitive market packed with strong domestic brands. 

As per sales data from China, the all-electric crossover finished first among the country’s best-selling EVs and plug-in hybrids. The Model 3 also placed within the country’s top ten vehicles.

Model Y leads China’s NEV rankings

The graphic, shared on X and sourced from Chinese auto industry data aggregator Yiche, listed the top 20 best-selling new energy vehicles in China for December. Tesla’s Model Y claimed the No. 1 position with roughly 65,874 units sold, finishing well ahead of a field dominated by domestic manufacturers such as BYD, SAIC-GM-Wuling, and Xiaomi.

The chart also showed strong performances from other high-volume models, including BYD’s Qin Plus, which sold 46,837 units during the month. Tesla’s Model 3 ranked eighth overall, with just under 28,000 units sold, placing it ahead of numerous locally produced competitors despite its rather premium price.

Tesla China’s strong December

Tesla China had a stellar December 2025. During the month, Tesla sold 97,171 vehicles wholesale in China, as per data from the China Passenger Car Association (CPCA). The result marked Tesla China’s second-highest monthly total on record, trailing only November 2022’s peak of 100,291 units.

Advertisement

December’s wholesale figure represented a 3.63% increase from the same month a year earlier and a 12.08% jump from November. Industry watchers have suggested that part of the surge was driven by Tesla pulling deliveries forward to allow customers to benefit from more favorable purchase tax policies before year-end. 

Despite this, December’s results suggest that Tesla’s Model Y and Model 3 remain highly competitive offerings in China, which is extremely impressive considering the competition from domestic players and their still premium price.

Continue Reading