

Energy
Tesla’s Director of Battery Engineering has reportedly left the company
Tesla’s Director of Battery Engineering, Jon Wagner, has reportedly left the company to focus on a new role at a battery and powertrain startup in Redwood City, CA. The report, first surfaced on Jalopnik, states that Wagner departed Tesla in October, despite his LinkedIn profile still showing that he’s currently employed by the Silicon Valley electric car maker.
Wagner, who’s been at Tesla since 2013, has served as Tesla’s Interim Director for Body Engineering, Computer Aided Engineering, Materials, and Battery Manufacturing Engineering throughout his near five-year term. During his time at Tesla, Wagner led the cost-down and product improvement effort for Model S and Model X’s battery pack. He also pushed research and development efforts that would ultimately translate into technological innovation for Tesla’s Powerwall and Model 3.
According to the United States Patent and Trademark Office (USPTO), Wagner is one of the inventors on a patent that was filed by Tesla for an Energy storage system with heat pipe thermal management. We’ve provided background for the patent as outlined by the USPTO.
Energy storage systems are used in a variety of contexts. For example, an electric vehicle can have a number of individual energy storage units (e.g., lithium-ion cells) stored inside a compartment, and this system is often referred to as a battery pack. Cells and other storage units generate heat during operation, such as during the charging process and when the cells are used to deliver energy, for example to the propulsion/traction system of the vehicle.
One cooling approach currently being used involves lithium-ion cells that are electrically connected by an anode terminal at the bottom of the cell, and a cathode terminal on top of the cell. These cells are arranged to all have the same orientation (e.g., “standing up”) with some spacing provided between all adjacent cells. The spacing facilitates a cooling conduit to run between the cells and be in contact with at least a portion of the outer surface of each cell. The cooling conduit has a coolant flowing through it, which removes thermal energy from inside the battery pack to some location on the outside, where heat can be safely dissipated. In order to provide a safe coolant flow, one must provide fluid connections into and out of the battery package, and the coolant path inside the battery pack must be reliable and have enough capacity.
Wagner’s departure comes at a critical time for Tesla, as it continues to work through battery production challenges being faced at the Gigafactory, and looks to prove to the consumer market that the company’s ‘holy grail’ vehicle, Model 3, will be able to reach volume production of 5,000 vehicles per week by the end of March 2018.
The Silicon Valley electric car maker noted in its third quarter 2017 earnings report that some of the manufacturing processes for Model 3’s battery modules needed to be redesigned, thus delaying the company’s original plan to begin volume production in December by three months. “To date, our primary production constraint has been in the battery module assembly line at Gigafactory 1, where cells are packaged into modules.” read the statement from Tesla in its update letter.
Tesla CEO Elon Musk provided additional background during a Q&A call with analysts, noting that much of the software that was needed for battery module production had to be redesigned. “We had to rewrite all of the software, from scratch. We managed to write 20 to 30 man-years of software in 4 weeks.” said Musk in explaining the level of reprogramming needed for the manufacturing robots.
As senior leaders at Tesla continue to depart, one has to question whether Wall Street’s love and hate stock and Silicon Valley’s sweetheart is biting off more than it can chew. Are these turnovers early indication that Tesla might be headed for a major downturn in 2018 or is it all par for the course?
Energy
Tesla recalls Powerwall 2 units in Australia

Tesla will recall Powerwall 2 units in Australia after a handful of property owners reported fires that caused “minor property damage.” The fires were attributed to cells used by Tesla in the Powerwall 2.
Tesla Powerwall is a battery storage unit that retains energy from solar panels and is used by homeowners and businesses to maintain power in the event of an outage. It also helps alleviate the need to rely on the grid, which can help stabilize power locally.
Powerwall owners can also enroll in the Virtual Power Plant (VPP) program, which allows them to sell energy back to the grid, helping to reduce energy bills. Tesla revealed last year that over 100,000 Powerwalls were participating in the program.
Tesla announces 100k Powerwalls are participating in Virtual Power Plants
The Australia Competition and Consumer Commission said in a filing that it received several reports from owners of fires that led to minor damage. The Australian government agency did not disclose the number of units impacted by the recall.
The issue is related to the cells, which Tesla sources from a third-party company.
Anyone whose Powerwall 2 unit is impacted by the recall will be notified through the Tesla app, the company said.
Energy
Tesla’s new Megablock system can power 400,000 homes in under a month
Tesla also unveiled the Megapack 3, the latest iteration of its flagship utility scale battery.

Tesla has unveiled the Megablock and Megapack 3, the latest additions to its industrial-scale battery storage solution lineup.
The products highlight Tesla Energy’s growing role in the company, as well as the division’s growing efforts to provide sustainable energy solutions for industrial-scale applications.
Megablock targets speed and scale
During the “Las Megas” event in Las Vegas, Tesla launched Megablock, a pre-engineered medium-voltage block designed to integrate Megapack 3 units in a plug-and-play system. Capable of 20 MWh AC with a 25-year life cycle and more than 10,000 cycles, the Megablock could achieve 91% round-trip efficiency at medium voltage, inclusive of auxiliary loads.
Tesla emphasized that Megablock can be installed 23% faster with up to 40% lower construction costs. The platform eliminates above-ground cabling through a new flexible busbar assembly and delivers site-level density of 248 MWh per acre. With Megablock, Tesla is also aiming to commission 1 GWh in just 20 business days, or enough to power 400,000 homes in less than a month.
“With Megablock, we are targeting to commission 1 GWh in 20 business days, which is the equivalent of bringing power to 400,000 homes in less than a month. It’s crazy. How are we planning to do that? Like most things at Tesla, we are ruthlessly attacking every opportunity to save our customers time, simplify the process, remove steps, (and) automate as much as we can,” the company said.
Megapack 3 is all about simplicity
The Megapack 3 is Tesla’s next-generation utility battery, designed with a simplified architecture that cuts 78% of connections compared to the previous version. Its thermal bay is drastically simplified, and it uses a Model Y heat pump on steroids. The battery weighs about 86,000 pounds and holds 5 MWh of usable AC energy. Tesla engineers incorporated a larger battery module and a new 2.8-liter LFP cell co-developed with the company’s cell team.
The Megapack 3 is designed for serviceability, and it features easier front access and no roof penetrations. About 75% of Megapack 3’s total mass is battery cells, with individual modules weighing as much as a Cybertruck. It’s also tough, with an ambient operating temperature range from -40C to 60C. This should allow the Megapack 3 to operate optimally from the coldest to the hottest regions on the planet.
Production is set to begin at Tesla’s Houston Megafactory in late 2026, with planned capacity of 50 GWh per year. Additional supply will come from Tesla’s 7 GWh LFP facility in Nevada, which is expected to open in 2025, as well as with third-party partners.
Energy
Tesla Energy is the world’s top global battery storage system provider again
Tesla Energy captured 15% of the battery storage segment’s global market share in 2024.

Tesla Energy held its top position in the global battery energy storage system (BESS) integrator market for the second consecutive year, capturing 15% of global market share in 2024, as per Wood Mackenzie’s latest rankings.
Tesla Energy’s lead, however, is shrinking, as Chinese competitors like Sungrow are steadily increasing their global footprint, particularly in European markets.
Tesla Energy dominates in North America, but its lead is narrowing globally
Tesla Energy retained its leadership in the North American market with a commanding 39% share in 2024. Sungrow, though still ranked second in the region, saw its share drop from 17% to 10%. Powin took third place, even if the company itself filed for bankruptcy earlier this year, as noted in a Solar Power World report.
On the global stage, Tesla Energy’s lead over Sungrow shrank from four points in 2023 to just one in 2024, indicating intensifying competition. Chinese firm CRRC came in third worldwide with an 8% share.
Wood Mackenzie ranked vendors based on MWh shipments with recognized revenue in 2024. According to analyst Kevin Shang, “Competition among established BESS integrators remains incredibly intense. Seven of the top 10 vendors last year struggled to expand their market share, remaining either unchanged or declining.”

Chinese integrators surge in Europe, falter in U.S.
China’s influence on the BESS market continues to grow, with seven of the global top 10 BESS integrators now headquartered in the country. Chinese companies saw a 67% year-over-year increase in European market share, and four of the top 10 BESS vendors in Europe are now based in China. In contrast, Chinese companies’ market share in North America dropped more than 30%, from 23% to 16% amid Tesla Energy’s momentum and the Trump administration’s policies.
Wood Mackenzie noted that success in the global BESS space will hinge on companies’ ability to adapt to divergent regulations and geopolitical headwinds. “The global BESS integrator landscape is becoming increasingly complex, with regional trade policies and geopolitical tensions reshaping competitive dynamics,” Shang noted, pointing to Tesla’s maintained lead and the rapid ascent of Chinese rivals as signs of a shifting industry balance.
“While Tesla maintains its global leadership, the rapid rise of Chinese integrators in Europe and their dominance in emerging markets like the Middle East signals a fundamental shift in the industry. Success will increasingly depend on companies’ ability to navigate diverse regulatory environments, adapt to local market requirements, and maintain competitive cost structures across multiple regions,” the analyst added.
-
Elon Musk2 weeks ago
Tesla FSD V14 set for early wide release next week: Elon Musk
-
News1 week ago
Elon Musk gives update on Tesla Optimus progress
-
News1 week ago
Tesla has a new first with its Supercharger network
-
News2 weeks ago
Tesla job postings seem to show next surprise market entry
-
News2 weeks ago
Tesla makes a big change to reflect new IRS EV tax credit rules
-
Investor's Corner1 week ago
Tesla gets new Street-high price target with high hopes for autonomy domination
-
Lifestyle1 week ago
500-mile test proves why Tesla Model Y still humiliates rivals in Europe
-
News7 days ago
Tesla Giga Berlin’s water consumption has achieved the unthinkable