Connect with us

News

Astra ‘Rocket 3’ nosecone dooms first Florida launch attempt

Published

on

On Thursday, February 10th, Astra Space’s Rocket 3.3 launch vehicle took off from Cape Canaveral Space Force Station (CCSFS) Launch Complex 46 (LC-46).

Unfortunately, while liftoff and booster ascent appeared to be more or less perfect, Rocket 3’s payload fairing failed to separate, triggering a series of events that caused its upper stage to enter an uncontrolled and unrecoverable spin after burning for just a few seconds. Astra was unable to salvage the spinning rocket, resulting in a mission failure well short of orbit.

“Unfortunately we heard that an issue has been experienced during flight that prevented the delivery of our customer payloads to orbit today. We are deeply sorry to our customers NASA, University of Alabama, the University of Mexico and the University of California Berkeley,” said Astra Space Director of Product Management Carolina Grossman. “More information will be provided as we complete the data review.”

Today’s launch comes after two previous aborted launch attempts. The first attempt on February 5th was delayed due to a CCSFS radar system malfunction. The second launch delay came on February 7th, after the rocket aborted briefly after ignition because of a minor telemetry issue.

The Mission

NASA’s first mission under the agency’s Venture Class Launch Services (VCLS) Demonstration 2 contract hoped to launch four CubeSats to space as early as February 5th, 2022. The satellites, which made up the agency’s 41st Educational Launch of Nano-satellites (ELaNa) mission, were the first VCLS payloads launched – albeit unsuccessfully – from Cape Canaveral’s LC-46 pad, which last supported NASA’s Orion spacecraft Ascent Abort 2 (AA-2) test flight in July 2019.

Advertisement
-->

The satellites onboard the flight were developed by three universities and one NASA center:

  • BAMA 1 (University of Alabama, Tusscolusa)
  • INCA (New Mexico State University, Las Cruces)
  • QubeSat (University of California, Berkeley) 
  • R5-S1 (NASA’s Johnson Space Center, Houston)

The ELaNa 41 mission CubeSats were selected through NASA’s CubeSat Launch Initiative (CSLI) and were assigned to the mission by NASA’s Launch Services Program based at Kennedy. CSLI provides launch opportunities for small satellite payloads built by universities, high schools, NASA Centers, and non-profit organizations.

About Astra

Founded in 2016, Astra Space is an American launch vehicle company based in Alameda, California. Astra’s official vision “is to Improve Life on Earth from Space by creating a healthier and more connected planet.” The company hopes to secure a large portion of the small satellite launch market, stating that it “offers the lowest cost-per-launch dedicated orbital launch service of any operational launch provider in the world.”

As of November 2021, Astra charges around $2.5-3.5M for a dedicated Rocket 3 launch, which can deliver up to 150 kg (330 lb) to low Earth orbit (LEO). In comparison, for a dedicated Electron launch, Rocket Lab charges about $7.5M for 300 kg (660 lb) to LEO. For customers willing to accept a one-size-fits-all rideshare solution, SpaceX charges $1M for 200 kg (440 lb) to LEO or higher sun-synchronous orbits (SSOs).

While the aerospace company is based out of California, its frequent orbital and suborbital test flights have all been conducted at the Pacific Spaceport Complex in Kodiak, Alaska. Prior test flights used Rocket 1, Rocket 2, and Rocket 3 prototypes as Astra refined its design and embraced a hardware-rich development style that didn’t shy away from failure.

Rocket 3.3 reached orbit for the first time – carrying an instrumented boilerplate payload for the United States Space Force – on November 21st, 2021. Less than two months later, Rocket 3.3 (serial number LV08) attempted to carry several NASA-sponsored cubesats into orbit on February 10th, 2022 – also the rocket’s first East Coast launch. Like Rocket 3.3’s predecessors, the two-stage vehicle was fueled with liquid oxygen (LOx) and refined kerosene (RP-1). Powered by five Delphin engines, the first stage produces up to ~145 kilonewtons (32,500 lbf) of thrust at liftoff. The second stage is powered by one pressure-fed Aether engine that delivers about 3.3 kN (740 lbf) of thrust in the vacuum of space.

Advertisement
-->

The unsuccessful launch attempt occurred just three months after Astra applied for their Federal Aviation Administration (FAA) launch license and less than one day after receiving that license.

Monica Pappas is a space flight enthusiast living on Florida's Space Coast. As a spaceflight reporter, her goal is to share stories about established and upcoming spaceflight companies. She hopes to share her excitement for the tremendous changes coming in the next few years for human spaceflight.

Advertisement
Comments

News

Waymo scrutinized after self-driving taxis cause traffic jams during SF blackout

It’s not farfetched to speculate that it would have been a doomsday scenario for Tesla had FSD behaved this way.

Published

on

Credit: @AnnTrades/X

A power outage across San Francisco over the weekend forced numerous Waymo self-driving taxis to stop at darkened intersections and cause traffic blockages in multiple locations across the city. The disruption left riders stranded, frustrated drivers blocked, and city officials stepping in as the Alphabet-owned company temporarily suspended service amid the widespread gridlock.

Needless to say, it would likely have been a doomsday scenario for Tesla had FSD behaved in a similar way, especially if fleets of its robotaxis blocked traffic for numerous drivers. 

Power outage halts Waymo fleet

The outage knocked out electricity for tens of thousands of customers, leaving traffic signals dark across large parts of the city, as noted in a report from the New York Times. Waymo vehicles began stopping at intersections and remained stationary for extended periods, seemingly unable to operate. Tow truck operators worked through the night removing immobilized vehicles, while videos circulated online showing Waymos with hazard lights flashing as traffic backed up around them.

Waymo later confirmed that it had paused its Bay Area ride-hailing service after the San Francisco mayor’s office contacted the company about the congestion its vehicles were contributing to. Service began coming back online shortly after 3:30 p.m. local time, though some users still reported being unable to request rides. Waymo maintained that no injuries or accidents were reported during the outage.

Autonomous cars during emergencies

The incident surprised industry observers since autonomous vehicles are designed to function during signal outages and temporary connectivity losses. Waymo stated that its vehicles treat nonfunctional signals as four-way stops, but “the sheer scale of the outage led to instances where vehicles remained stationary longer than usual to confirm the state of the affected intersections. This contributed to traffic friction during the height of the congestion.” Experts suggested the problem may have been linked to the vehicles’ reliance on remote assistance teams, which help resolve complex situations the cars cannot handle independently.

Advertisement
-->

“Yesterday’s power outage was a widespread event that caused gridlock across San Francisco, with non-functioning traffic signals and transit disruptions. While the failure of the utility infrastructure was significant, we are committed to ensuring our technology adjusts to traffic flow during such events,” the Waymo spokesperson stated, adding that it is “focused on rapidly integrating the lessons learned from this event, and are committed to earning and maintaining the trust of the communities we serve every day.”

Continue Reading

News

Tesla aims to combat common Full Self-Driving problem with new patent

Tesla writes in the patent that its autonomous and semi-autonomous vehicles are heavily reliant on camera systems to navigate and interact with their environment.

Published

on

Credit: @samsheffer | x

Tesla is aiming to combat a common Full Self-Driving problem with a new patent.

One issue with Tesla’s vision-based approach is that sunlight glare can become a troublesome element of everyday travel. Full Self-Driving is certainly an amazing technology, but there are still things Tesla is aiming to figure out with its development.

Unfortunately, it is extremely difficult to get around this issue, and even humans need ways to combat it when they’re driving, as we commonly use sunglasses or sun visors to give us better visibility.

Cameras obviously do not have these ways to fight sunglare, but a new patent Tesla recently had published aims to fight this through a “glare shield.”

Tesla writes in the patent that its autonomous and semi-autonomous vehicles are heavily reliant on camera systems to navigate and interact with their environment.

The ability to see surroundings is crucial for accurate performance, and glare is one element of interference that has yet to be confronted.

Tesla described the patent, which will utilize “a textured surface composed of an array of micro-cones, or cone-shaped formations, which serve to scatter incident light in various directions, thereby reducing glare and improving camera vision.”

The patent was first spotted by Not a Tesla App.

The design of the micro-cones is the first element of the puzzle to fight the excess glare. The patent says they are “optimized in size, angle, and orientation to minimize Total Hemispherical Reflectance (THR) and reflection penalty, enhancing the camera’s ability to accurately interpret visual data.”

Additionally, there is an electromechanical system for dynamic orientation adjustment, which will allow the micro-cones to move based on the angle of external light sources.

This is not the only thing Tesla is mulling to resolve issues with sunlight glare, as it has also worked on two other ways to combat the problem. One thing the company has discussed is a direct photon count.

CEO Elon Musk said during the Q2 Earnings Call:

“We use an approach which is direct photon count. When you see a processed image, so the image that goes from the sort of photon counter — the silicon photon counter — that then goes through a digital signal processor or image signal processor, that’s normally what happens. And then the image that you see looks all washed out, because if you point the camera at the sun, the post-processing of the photon counting washes things out.”

Future Hardware iterations, like Hardware 5 and Hardware 6, could also integrate better solutions for the sunglare issue, such as neutral density filters or heated lenses, aiming to solve glare more effectively.

Continue Reading

Elon Musk

Delaware Supreme Court reinstates Elon Musk’s 2018 Tesla CEO pay package

The unanimous decision criticized the prior total rescission as “improper and inequitable,” arguing that it left Musk uncompensated for six years of transformative leadership at Tesla.

Published

on

Gage Skidmore, CC BY-SA 4.0 , via Wikimedia Commons

The Delaware Supreme Court has overturned a lower court ruling, reinstating Elon Musk’s 2018 compensation package originally valued at $56 billion but now worth approximately $139 billion due to Tesla’s soaring stock price. 

The unanimous decision criticized the prior total rescission as “improper and inequitable,” arguing that it left Musk uncompensated for six years of transformative leadership at Tesla. Musk quickly celebrated the outcome on X, stating that he felt “vindicated.” He also shared his gratitude to TSLA shareholders.

Delaware Supreme Court makes a decision

In a 49-page ruling Friday, the Delaware Supreme Court reversed Chancellor Kathaleen McCormick’s 2024 decision that voided the 2018 package over alleged board conflicts and inadequate shareholder disclosures. The high court acknowledged varying views on liability but agreed rescission was excessive, stating it “leaves Musk uncompensated for his time and efforts over a period of six years.”

The 2018 plan granted Musk options on about 304 million shares upon hitting aggressive milestones, all of which were achieved ahead of time. Shareholders overwhelmingly approved it initially in 2018 and ratified it once again in 2024 after the Delaware lower court struck it down. The case against Musk’s 2018 pay package was filed by plaintiff Richard Tornetta, who held just nine shares when the compensation plan was approved.

A hard-fought victory

As noted in a Reuters report, Tesla’s win avoids a potential $26 billion earnings hit from replacing the award at current prices. Tesla, now Texas-incorporated, had hedged with interim plans, including a November 2025 shareholder-approved package potentially worth $878 billion tied to Robotaxi and Optimus goals and other extremely aggressive operational milestones.

Advertisement
-->

The saga surrounding Elon Musk’s 2018 pay package ultimately damaged Delaware’s corporate appeal, prompting a number of high-profile firms, such as Dropbox, Roblox, Trade Desk, and Coinbase, to follow Tesla’s exodus out of the state. What added more fuel to the issue was the fact that Tornetta’s legal team, following the lower court’s 2024 decision, demanded a fee request of more than $5.1 billion worth of TSLA stock, which was equal to an hourly rate of over $200,000.

Delaware Supreme Court Elon Musk 2018 Pay Package by Simon Alvarez

Continue Reading