Connect with us

News

Blue Origin rocket launch fails after engine catches fire

Blue Origin's 23rd New Shepard launch has ended in failure. (Blue Origin)

Published

on

Blue Origin’s suborbital New Shepard rocket suffered a catastrophic engine failure during its 23rd launch attempt, ending a seven-year streak of 21 successes.

Following a handful of mostly weather-related delays that pushed New Shepard’s 23rd launch about two weeks past its original August 31st target, the single-stage vehicle lifted off from Blue Origin’s Van Horn, Texas launch site around 10:25 am CDT (14:25 UTC) on September 12th. Measuring about 15 meters (49 ft) tall, 3.7 meters (12.1 ft) wide, and capable of producing about 50 tons (~110,000 lbf) of thrust with its lone BE-3 engine at full throttle, New Shepard only made it about halfway through its nominal powered ascent before catastrophe struck.

The first signs of trouble appeared about 62 seconds after liftoff in the form of flickers and flashes in New Shepard’s exhaust, which is normally almost transparent. Less than two seconds after the first seemingly harmless flash, flames unintentionally burst from New Shepard’s engine section and quickly surrounded its BE-3PM engine. Less than a second after that, the rocket’s aft and began shedding pieces and stopped producing thrust, triggering a solid rocket motor stored inside its deployable capsule.

About a second after the incident began, the capsule’s abort motor ignited and carried the suborbital spacecraft safely away from the failing New Shepard booster. The capsule ultimately coasted to an apogee of 11.4 kilometers (7.1 miles) – almost ten times lower than nominal – before descending back to Earth, deploying its parachute system, and safely touching down in the Texas desert scrub. Thankfully, NS-23 was only carrying experiments, and no humans were at risk. Had a crew of suborbital tourists been aboard, they would have likely been a little battered but otherwise completely unharmed.

Advertisement

While any failure of a rocket is unfortunate, the failure of a rocket nominally designed to launch humans can have even worse repercussions. However, thanks to the seemingly flawless unplanned performance of New Shepard’s abort system, it’s safe to say that the day could have gone much worse for Blue Origin.

The failure is still not going to do the reputation of Blue Origin or New Shepard any favors. It also invites less than favorable comparisons with SpaceX, a different spaceflight startup also funded and founded by a tech tycoon in the early 2000s.

Founded a year and a half after Blue Origin, SpaceX, in comparison, reached orbit with Falcon 1 in 2008. In June 2010, it successfully debuted Falcon 9, an orbital-class rocket roughly 20 times larger. In 2012, Falcon 9 successfully launched an orbital Dragon spacecraft which became the first private vehicle to dock to the International Space Station. In January 2015, it attempted to recover a Falcon 9 booster for the first time. In December 2015, one month after Blue Origin’s first successful New Shepard landing, SpaceX aced its first Falcon 9 booster landing.

Nine months later, Falcon 9 suffered a catastrophic failure during prelaunch testing in September 2016 and didn’t return to flight until January 2017. That is where, for the most part, the paths of Blue Origin and SpaceX almost entirely diverged – but not in any obvious way. Instead, after a successful suborbital launch in October 2016, New Shepard didn’t fly again until December 2017. In the roughly six years between October 2016 and September 2022, New Shepard completed 10 uncrewed suborbital launches, 6 suborbital tourist launches, and suffered one failure during another uncrewed mission – 18 total launches.

Advertisement

Despite suffering a catastrophic failure that destroyed a customer’s multimillion-dollar satellite in September 2016, SpaceX returned to flight four months later, completed 150 orbital Falcon launches without fail in the same period; debuted the world’s largest operational rocket, Falcon Heavy, and completed two additional launches with it; debuted Crew Dragon and Cargo Dragon 2 on Falcon 9; launched its first astronauts into orbit, launched its first operational astronaut transport mission for NASA, launched its first two Starlink internet satellite prototypes, launched another 60 refined Starlink prototypes, began operational Falcon 9 Starlink launches, built and launched more than 3000 Starlink satellites total; landed 130+ Falcon boosters, and reuse Falcon boosters 117 times.

(SpaceX)
Completed on September 11th, Falcon 9’s latest mission was its 173rd successful orbital launch. (Richard Angle)

The differences could not be more stark or strange, given that both companies have been operating more or less side by side and working towards similar goals for as long as they’ve existed. To Blue Origin’s credit, the company managed a record six New Shepard launches – three carrying tourists – in 2021. NS-23 was its fourth planned launch in 2022, suggesting that it could have achieved a similar cadence this year if the mission had had a different fate. Instead, the launch failure has triggered an anomaly investigation that will search for the root cause and try to uncover shortcomings that will then need to be rectified before New Shepard can return to flight. Given that Blue Origin once went 15 months between successful New Shepard launches, it’s impossible to say how long that process will take.

In the meantime, the apparent failure of New Shepard’s BE-3PM engine could trigger investigations into Blue Origin’s other engine programs. While substantially different, BE-3U, a variant optimized for the upper stage of New Glenn, Blue Origin’s first orbital rocket, likely shares the most in common with New Shepard’s BE-3PM. BE-7, a small engine meant to power a Moon lander, could also be impacted.

Most importantly, Blue Origin is also in the midst of finally preparing two much more powerful and far more complex BE-4 engines for customer United Launch Alliance (ULA). Years behind schedule, Blue Origin completed the first two theoretically flightworthy BE-4 engines and began putting them through qualification testing earlier this year. It wants to ship those engines to ULA as soon as possible to avoid delaying the debut of the customer’s new Vulcan Centaur rocket. BE-3PM and BE-4 probably don’t share a single part, but many Blue Origin employees have likely worked on both programs, and the same Blue Origin leadership has certainly overseen both. As long as there’s any form of commonality, no matter how abstract, there’s always a risk that the underlying cause of problems in one program could be present in others.

Ultimately, it’s unlikely that there will be any serious connection. The New Shepard booster that failed on NS-23 was almost five years old and was flying for a record-breaking ninth time. It’s possible that Blue Origin was privately worried about the possibility of failure while pushing the envelope, but it offered no qualifications while discussing the mission. SpaceX CEO Elon Musk, in comparison, has almost always made it clear that failure is a possibility when the company attempts ‘firsts’ of any kind.

Advertisement

SpaceX recently launched and recovered the same Falcon 9 booster for the 14th time, setting its own internal record. As a result, that lone Falcon 9 booster, B1058, has flown as many times in the last 31 months as all New Shepard boosters combined have flown in the last 45 months.

Finally, while no company should be put in that position, Blue Origin deserves praise for its live coverage of the anomaly. Instead of immediately cutting the feeds, which would be what most providers would be expected to do during an operational launch, Blue Origin continued to broadcast views of the failure and provide live commentary until New Shepard’s capsule touched down well ahead of schedule.

Eric Ralph is Teslarati's senior spaceflight reporter and has been covering the industry in some capacity for almost half a decade, largely spurred in 2016 by a trip to Mexico to watch Elon Musk reveal SpaceX's plans for Mars in person. Aside from spreading interest and excitement about spaceflight far and wide, his primary goal is to cover humanity's ongoing efforts to expand beyond Earth to the Moon, Mars, and elsewhere.

Advertisement
Comments

Elon Musk

Celebrating SpaceX’s Falcon Heavy Tesla Roadster launch, seven years later (Op-Ed)

Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”

Published

on

SpaceX's first Falcon Heavy launch also happened to be a strategic and successful test of Falcon upper stage coast capabilities. (SpaceX)

When Falcon Heavy lifted off in February 2018 with Elon Musk’s personal Tesla Roadster as its payload, SpaceX was at a much different place. So was Tesla. It was unclear whether Falcon Heavy was feasible at all, and Tesla was in the depths of Model 3 production hell.

At the time, Tesla’s market capitalization hovered around $55–60 billion, an amount critics argued was already grossly overvalued. SpaceX, on the other hand, was an aggressive private launch provider known for taking risks that traditional aerospace companies avoided.

The Roadster launch was bold by design. Falcon Heavy’s maiden mission carried no paying payload, no government satellite, just a car drifting past Earth with David Bowie playing in the background. To many, it looked like a stunt. For Elon Musk and the SpaceX team, it was a bold statement: there should be some things in the world that simply inspire people.

Inspire it did, and seven years later, SpaceX and Tesla’s results speak for themselves.

Advertisement
Credit: SpaceX

Today, Tesla is the world’s most valuable automaker, with a market capitalization of roughly $1.54 trillion. The Model Y has become the best-selling car in the world by volume for three consecutive years, a scenario that would have sounded insane in 2018. Tesla has also pushed autonomy to a point where its vehicles can navigate complex real-world environments using vision alone.

And then there is Optimus. What began as a literal man in a suit has evolved into a humanoid robot program that Musk now describes as potential Von Neumann machines: systems capable of building civilizations beyond Earth. Whether that vision takes decades or less, one thing is evident: Tesla is no longer just a car company. It is positioning itself at the intersection of AI, robotics, and manufacturing.

SpaceX’s trajectory has been just as dramatic.

The Falcon 9 has become the undisputed workhorse of the global launch industry, having completed more than 600 missions to date. Of those, SpaceX has successfully landed a Falcon booster more than 560 times. The Falcon 9 flies more often than all other active launch vehicles combined, routinely lifting off multiple times per week.

Falcon Heavy successfully clears the tower after its maiden launch, February 6, 2018. (Tom Cross)

Falcon 9 has ferried astronauts to and from the International Space Station via Crew Dragon, restored U.S. human spaceflight capability, and even stepped in to safely return NASA astronauts Butch Wilmore and Suni Williams when circumstances demanded it.

Starlink, once a controversial idea, now dominates the satellite communications industry, providing broadband connectivity across the globe and reshaping how space-based networks are deployed. SpaceX itself, following its merger with xAI, is now valued at roughly $1.25 trillion and is widely expected to pursue what could become the largest IPO in history.

Advertisement

And then there is Starship, Elon Musk’s fully reusable launch system designed not just to reach orbit, but to make humans multiplanetary. In 2018, the idea was still aspirational. Today, it is under active development, flight-tested in public view, and central to NASA’s future lunar plans.

In hindsight, Falcon Heavy’s maiden flight with Elon Musk’s personal Tesla Roadster was never really about a car in space. It was a signal that SpaceX and Tesla were willing to think bigger, move faster, and accept risks others wouldn’t.

The Roadster is still out there, orbiting the Sun. Seven years later, the question is no longer “What if this works?” It’s “How far does this go?”

Advertisement
Continue Reading

Energy

Tesla launches Cybertruck vehicle-to-grid program in Texas

The initiative was announced by the official Tesla Energy account on social media platform X.

Published

on

Credit: Tesla

Tesla has launched a vehicle-to-grid (V2G) program in Texas, allowing eligible Cybertruck owners to send energy back to the grid during high-demand events and receive compensation on their utility bills. 

The initiative, dubbed Powershare Grid Support, was announced by the official Tesla Energy account on social media platform X.

Texas’ Cybertruck V2G program

In its post on X, Tesla Energy confirmed that vehicle-to-grid functionality is “coming soon,” starting with select Texas markets. Under the new Powershare Grid Support program, owners of the Cybertruck equipped with Powershare home backup hardware can opt in through the Tesla app and participate in short-notice grid stress events.

During these events, the Cybertruck automatically discharges excess energy back to the grid, supporting local utilities such as CenterPoint Energy and Oncor. In return, participants receive compensation in the form of bill credits. Tesla noted that the program is currently invitation-only as part of an early adopter rollout.

Advertisement

The launch builds on the Cybertruck’s existing Powershare capability, which allows the vehicle to provide up to 11.5 kW of power for home backup. Tesla added that the program is expected to expand to California next, with eligibility tied to utilities such as PG&E, SCE, and SDG&E.

Powershare Grid Support

To participate in Texas, Cybertruck owners must live in areas served by CenterPoint Energy or Oncor, have Powershare equipment installed, enroll in the Tesla Electric Drive plan, and opt in through the Tesla app. Once enrolled, vehicles would be able to contribute power during high-demand events, helping stabilize the grid.

Tesla noted that events may occur with little notice, so participants are encouraged to keep their Cybertrucks plugged in when at home and to manage their discharge limits based on personal needs. Compensation varies depending on the electricity plan, similar to how Powerwall owners in some regions have earned substantial credits by participating in Virtual Power Plant (VPP) programs.

Continue Reading

News

Samsung nears Tesla AI chip ramp with early approval at TX factory

This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.

Published

on

Tesla-Chips-HW3-1
Image used with permission for Teslarati. (Credit: Tom Cross)

Samsung has received temporary approval to begin limited operations at its semiconductor plant in Taylor, Texas.

This marks a key step towards the tech giant’s production of Tesla’s next-generation AI5 chips in the United States.

Samsung clears early operations hurdle

As noted in a report from Korea JoongAng Daily, Samsung Electronics has secured temporary certificates of occupancy (TCOs) for a portion of its semiconductor facility in Taylor. This should allow the facility to start operations ahead of full completion later this year.

City officials confirmed that approximately 88,000 square feet of Samsung’s Fab 1 building has received temporary approval, with additional areas expected to follow. The overall timeline for permitting the remaining sections has not yet been finalized.

Advertisement

Samsung’s Taylor facility is expected to manufacture Tesla’s AI5 chips once mass production begins in the second half of the year. The facility is also expected to produce Tesla’s upcoming AI6 chips. 

Tesla CEO Elon Musk recently stated that the design for AI5 is nearly complete, and the development of AI6 is already underway. Musk has previously outlined an aggressive roadmap targeting nine-month design cycles for successive generations of its AI chips.

Samsung’s U.S. expansion

Construction at the Taylor site remains on schedule. Reports indicate Samsung plans to begin testing extreme ultraviolet (EUV) lithography equipment next month, a critical step for producing advanced 2-nanometer semiconductors.

Samsung is expected to complete 6 million square feet of floor space at the site by the end of this year, with an additional 1 million square feet planned by 2028. The full campus spans more than 1,200 acres.

Advertisement

Beyond Tesla, Samsung Foundry is also pursuing additional U.S. customers as demand for AI and high-performance computing chips accelerates. Company executives have stated that Samsung is looking to achieve more than 130% growth in 2-nanometer chip orders this year.

One of Samsung’s biggest rivals, TSMC, is also looking to expand its footprint in the United States, with reports suggesting that the company is considering expanding its Arizona facility to as many as 11 total plants. TSMC is also expected to produce Tesla’s AI5 chips. 

Advertisement
Continue Reading